LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Freudiger, D.; Kohn, I.; Stahl, K.; Weiler, M. (2014)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: T, G, GE1-350, Geography. Anthropology. Recreation, Environmental technology. Sanitary engineering, Environmental sciences, Technology, TD1-1066
In January 2011 a rain-on-snow (RoS) event caused floods in the major river basins in central Europe, i.e. the Rhine, Danube, Weser, Elbe, Oder, and Ems. This event prompted the questions of how to define a RoS event and whether those events have become more frequent. Based on the flood of January 2011 and on other known events of the past, threshold values for potentially flood-generating RoS events were determined. Consequently events with rainfall of at least 3 mm on a snowpack of at least 10 mm snow water equivalent (SWE) and for which the sum of rainfall and snowmelt contains a minimum of 20% snowmelt were analysed. RoS events were estimated for the time period 1950–2011 and for the entire study area based on a temperature index snow model driven with a European-scale gridded data set of daily climate (E-OBS data). Frequencies and magnitudes of the modelled events differ depending on the elevation range. When distinguishing alpine, upland, and lowland basins, we found that upland basins are most influenced by RoS events. Overall, the frequency of rainfall increased during winter, while the frequency of snowfall decreased during spring. A decrease in the frequency of RoS events from April to May has been observed in all upland basins since 1990. In contrast, the results suggest an increasing trend in the magnitude and frequency of RoS days in January and February for most of the lowland and upland basins. These results suggest that the flood hazard from RoS events in the early winter season has increased in the medium-elevation mountain ranges of central Europe, especially in the Rhine, Weser, and Elbe river basins.

Share - Bookmark

Cite this article