Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Platt, U.; Allan, W.; Lowe, D. (2004)
Languages: English
Types: Article
Methane is a significant atmospheric trace gas in the context of greenhouse warming and climate change. The dominant sink of atmospheric methane is the hydroxyl radical (OH). Recently, a mechanism for production of chlorine radicals (Cl) in the marine boundary layer (MBL) via bromine autocatalysis has been proposed. The importance of this mechanism in producing a methane sink is not clear at present because of the difficulty of in-situ direct measurement of Cl. However, the large kinetic isotope effect of Cl compared with OH produces a large fractionation of 13C compared with 12C in atmospheric methane. This property can be used to estimate the likely minimum size of the methane sink attributable to MBL Cl. By taking account of the mixing of MBL air into the free troposphere, we estimate that the global methane sink due to reaction with Cl atoms in the MBL could be as large as 19Tgyr-1, or about 3.3% of the total CH4 sink. However, its impact on the methane stable carbon isotope budget is large and warrants further attention.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allan, W., Manning, M. R., Lassey, K. R., Lowe, D. C., and Gomez, A. J.: Modeling the variation of δ13C in atmospheric methane: Phase ellipses and the kinetic isotope effect, Global Biogeochem. Cycles, 15, 467-481, 2001a.
    • Allan, W., Lowe, D. C., and Cainey, J. M.: Active chlorine in the remote marine boundary layer: Modeling anomalous measurements of δ13C in methane, Geophys. Res. Lett., 28, 3239-3242, 2001b.
    • Ayers, G. P., Gillett, R. W., Cainey, J. M., and Dick, A. L.: Chloride and bromide loss from sea-salt particles in Southern Ocean air, J. Atmos. Chem., 33, 299-319, 1999.
    • Bergamaschi, P., Hein, R., Brenninkmeijer, C. A. M., and Crutzen, P. J.: Inverse modelling of the global CO cycle 2. Inversion of 13C/12C and 18O/16O isotope ratios, J. Geophys. Res., 105, 1929-1945, 2000.
    • Bergamaschi, P., Lowe, D. C., Manning, M. R., Moss, R., Bromley, T., and Clarkson, T. S.: Transects of atmospheric CO, CH4, and their isotopic composition across the Pacific: Shipboard measurements and validation of inverse models, J. Geophys. Res., 106, 7993-18011, 2001.
    • Brenninkmeijer, C. A. M., Lowe, D. C., Manning, M. R., Sparks, R. J., and van Velthoven, P. F. J.: The 13C, 14C, and 18O isotopic composition of CO, CH4, and CO2 in the higher southern latitudes lower stratosphere, J. Geophys. Res., 100, 26 163-26 172, 1995.
    • Cantrell, C. A., Shetter, R. E., McDaniel, A. H., et al.: Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical, J. Geophys. Res., 95, 22 455-22 462, 1990.
    • Crutzen, P. J.: The role of methane in atmospheric chemistry and climate, in Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction: Proceedings 8th International Symposium on Ruminant Physiology, edited by: von Engelhardt, W., Leonardt-Marek, S., Breves, G., and Giesecke, D., 291-315, Ferdinand Enke Verlag, Stuttgart, Germany, 1995.
    • Dlugokencky, E. J., Masarie, K. A., Lang, P. M., and Tans, J. P.: Continuing decline in the growth rate of the atmospheric methane burden, Nature, 393, 447-450, 1998.
    • Etheridge, D. M., Steele, L. P., Francey, R. J., and Langenfelds, R. L.: Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability, J. Geophys. Res., 103, 15 979-15 993, 1998.
    • Fan, S.-M. and Jacob, D. J.: Surface ozone depletion in the Arctic spring sustained by bromine reactions on aerosols, Nature, 359, 522-524, 1992.
    • Fickert, S., Adams, J. W., and Crowley, J. N.: Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions, J. Geophys. Res., 104, 23 719-23 728, 1999.
    • Fitzenberger, R., Bo¨sch, H., Camy-Peyret, C., Chipperfield, M. P., Harder, H., et al.: First profile measurements of tropospheric BrO, Geophys. Res. Lett., 27, 2921-2924, 2000.
    • Frieß, U., Otten, C., Chipperfield, M. P., Wagner, T., Pfeilsticker, K., and Platt, U.: Intercomparison of measured and modelled BrO slant column amounts for the Arctic winter and spring 1994/95, Geophys. Res. Lett., 26, 1861-1864, 1999.
    • Graedel, T. E. and Keene, W. C.: Tropospheric budget of reactive chlorine, Global Biogeochem, Cycles, 9, 47-77, 1995.
    • Hausmann, M. and Platt, U.: Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992, J. Geophys. Res., 99, 25 399-25 414, 1994.
    • Keene, W. C., Khalil, M. A. K., Erickson, D. J., McCulloch, A., Graedel, T. E., et al.: Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory, J. Geophys. Res., 104, 8429-8440, 1999.
    • Knipping, E. M., Lakin, M. J., Foster, K. L., Jungwirth, P., Tobias, D. J., Gerber, R. B., Dabdub, D., and Finlayson-Pitts, B. J.: Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols, Science, 288, 301-306, 2000.
    • Laskin, A., Gaspar, D. J., Wang, W., Hunt, S. W., Cowin, J. P., Colson, S. D., and Finlayson-Pitts, B. J.: Reactions at Interfaces As a Source of Sulfate Formation in Sea-Salt Particles, Science, 301, 340-344, 2003.
    • Lary, D. J., Chipperfield, M. P., Toumi, R., and Lenton, T.: Heterogeneous atmospheric bromine chemistry, J. Geophys. Res., 101, 1489-1504, 1996.
    • Lowe, D. C., Brenninkmeijer, C. A. M., Tyler, S. C., and Dlugokencky, E. J.: Determination of the isotopic composition of atmospheric methane and its application in the Antarctic, J. Geophys. Res., 96, 15 455-15 467, 1991.
    • Lowe, D. C., Allan, W., Manning, M. R., Bromley, A. M., Brailsford, G. W., et al.: Shipboard determinations of the distribution of 13C in atmospheric methane in the Pacific, J. Geophys. Res., 104, 26 125-26 135, 1999.
    • Lowe, D. C., Allan, W., Manning, M. R., and Lassey, K. R.: Interannual variability of δ13C(CH4) in the Southern Hemisphere, EOS Trans. American Geophys. Union, 81, F76, 2000.
    • Mak, J. E., Manning, M. R., and Lowe, D. C.: Aircraft observations of δ13C of atmospheric methane over the Pacific in August 1991 and 1993: Evidence of an enrichment in 13CH4 in the Southern Hemisphere, J. Geophys. Res., 105, 1329-1335, 2000.
    • Manning, M. R., Brenninkmeijer, C. A. M., and Allan, W.: Atmospheric carbon monoxide budget of the southern hemisphere: Implications of 13C/12C measurements, J. Geophys. Res., 102, 10 673-10 682, 1997.
    • McCarthy, M. C., Connell, P., and Boering, K. A.: Isotopic fractionation of methane in the stratosphere and its effect on free tropospheric isotopic compositions, Geophys. Res. Lett., 28, 3657- 3660, 2001.
    • McElroy, C. T., McLinden, C. A., and McConnell, J. C.: Evidence for bromine monoxide in the free troposphere during Arctic polar sunrise, Nature, 397, 338-340, 1999.
    • Oum, K. W., Lakin, M. J., and Finlayson-Pitts, B. J.: Bromine activation in the troposphere by the dark reaction of O3 with seawater ice, Geophys. Res. Lett., 25, 3923-3926, 1998a.
    • Oum, K. W., Lakin, M. J., DeHaan, D. O., Brauers, T., and Finlayson-Pitts, B. J.: Formation of molecular chlorine from the photolysis of ozone and aqueous Sea-Salt particles, Science, 279, 74-77, 1998b.
    • Platt U. and Ho¨nninger, G.: The role of halogen species in the troposphere, Chemosphere, 52, No. 2, 325-338, 2003.
    • Platt, U. and Janssen, C.: Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere, Faraday Discuss., 100, 175-198, 1996.
    • Platt, U. and Lehrer, E.: ARCTOC Final Report to the European Union, Brussels, 1997.
    • Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., et al.: Atmospheric chemistry and greenhouse gases, Chapter 4, in: Climate Change 2001, The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, UK and New York, USA, 881, 2001.
    • Pszenny, A. A. P., Keene, W. C., Jacob, D. J., Fan, S., Maben, J. R., et al.: Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air, Geophys. Res. Lett., 20, 699-702, 1993.
    • Rosenlof, K. H. and Holton, J. R.: Estimation of the stratospheric residual circulation using the downward control principle, J. Geophys. Res., 98, 10 465-10 479, 1993.
    • Sander, R., Keene, W. C., Pszenny, A. A. P., Arimoto, R., Ayers, G. P., Baboukas, E., Cainey, J. M., Crutzen, P. J., Duce, R. A., Ho¨nninger, G., Huebert, B. J., Maenhautm, W., Mihalopoulosm, N., Turekianm, V. C., and Van Dingenen, R.: Inorganic bromine in the marine boundary layer: a critical review, Atmos. Chem. Phys., 3, 1301-1336, 2003, SRef-ID: 1680-7324/acp/2003-3-1301.
    • Saueressig, G., Crowley, J. N., Bergamaschi, P., Bru¨hl, C., Brenninkmeijer, C. A. M., and Fischer, H.: Carbon 13 and D kinetic isotope effects in the reactions of CH4 with O(1D) and OH: New laboratory measurements and their implications for the isotopic composition of stratospheric methane, J. Geophys. Res., 106, 23 127-23 138, 2001.
    • Singh, H. B., Thakur, A. N., Chen, Y. E., and Kanakidou, M.: Tetrachloroethylene as an indicator of low Cl atom concentrations in the troposphere, Geophys. Res. Lett., 23, 1523-1532, 1996.
    • Spicer, C. W., Chapman, E. G., Finlayson-Pitts, B. J., Plastridge, R. A., Hubbe, J. M., Fast, J. D., and Berkowitz, C. M.: Unexpectedly high concentrations of molecular chlorine in coastal air, Nature, 394, 353-356, 1998.
    • Stutz, J., Ackermann, R., Fast, J. D., and Barrie, L.: Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah, Geophys. Res. Lett., 29(10), doi:10.1029/2002GL014812, 2002.
    • Tang, T. and McConnel, J. C.: Autocatalytic release of bromine from Arctic snow pack during polar sunrise, Geophys. Res. Lett., 23, 2633-2636, 1996.
    • Van Roozendael, M., Wagner, T., Richter, A., Pundt, I., Arlander, D. W., et al.: Intercomparison of BrO measurements from ERS2 GOME, ground-based and balloon platforms, Proc. COSPAR Conf., Warsaw, July 2000, Adv. Space Res., 29, 1661-1666, 2002.
    • Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327-330, 1996.
    • Wang, J. S., McElroy, M. B., Spivakovsky, C. M., and Jones, D. B. A.: On the contribution of anthropogenic Cl to the increase in δ13C of atmospheric methane, Global Biogeochem. Cycles, 16(3), 1047, doi:10.1029/2001GB001572, 2002.
    • Wennberg, P. O.: Bromine explosion, Nature, 397, 299-301, 1999.
    • Wingenter, O. W., Kubo, M. K., Blake, N. J., Smith, T. W., Blake, D. R., and Rowland, F. S.: Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights, J. Geophys. Res., 101, 4331-4340, 1996.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from