LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wu, Guocan (2016)
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
The estimation accuracy of forecast error matrix is crucial to the assimilation result. Ensemble Kalman filter (EnKF) is a widely used ensemble based assimilation method, which initially estimate the forecast error matrix using a Monte Carlo method with the short-term ensemble forecast states. However, this estimate needs to be further improved using inflation technique. In this study, the forecast error inflation factor is estimated based on cross validation and the analysis sensitivity is also investigated. The improved EnKF assimilation scheme is validated by assimilating spatially correlated observations to the atmosphere-like Lorenz-96 model. The experiment results show that, the analysis error is reduced and the analysis sensitivity to observations is improved.

Share - Bookmark

Cite this article

Collected from