Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
L. S. Sklar; C. S. Riebe; C. E. Lukens; D. Bellugi (2016)
Publisher: Copernicus Publications
Journal: Earth Surface Dynamics
Languages: English
Types: Article
Subjects: QE500-639.5, Dynamic and structural geology

Classified by OpenAIRE into

mesheuropmc: human activities
The delivery of water, sediment, and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influence the production rate and initial particle size of sediments. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affects particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. For every point, the ratio of elevation to travel distance defines the mean slope for transport of mass to the outlet. Recognizing that mean slope is proportional to the average rate of loss of potential energy by water and sediment during transport to the outlet, we use the joint distribution of elevation and travel distance to define two new metrics for catchment geometry: "source-area power", and the corresponding catchment-wide integral "catchment power". We explore patterns in source-area and catchment power across three study catchments spanning a range of relief and drainage area. We then develop an empirical algorithm for generating synthetic source-area power distributions, which can be parameterized with data from natural catchments. This new way of quantifying the three-dimensional geometry of catchments can be used to explore the effects of topography on the distribution on fluxes of water, sediment, isotopes, and other landscape products passing through catchment outlets, and may provide a fresh perspective on problems of both practical and theoretical interest.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Algeo, T. J. and Seslavinsky, K. B.: Reconstructing eustatic and epeirogenic trends from Paleo, Dordrecht, the Netherlands, 209- 246, 1995.
    • Attal, M. and Lavé, J.: Changes of bedload characteristics along the Marsyandi River (central Nepal): Implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts, Geol. S. Am. S., 398, 143-171, 2006.
    • Bales, R. C., Hopmans, J. W., O'Geen, A. T., Meadows, M., Hartsough, P. C., Kirchner, P., Hunsaker, C. T., and Beaudette, D.: Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest, Vadose Zone J., 10, 786-799, 2011.
    • Brocklehurst, S. H. and Whipple, K. X.: Glacial erosion and relief production in the Eastern Sierra Nevada, California, Geomorphology, 42, 1-24, 2002.
    • Brocklehurst, S. H. and Whipple, K. X.: Hypsometry of glaciated landscapes, Earth Surf. Proc. Land., 29, 907-926, 2004.
    • Brozovic´, N., Burbank, D. W., and Meigs, A. J.: Climatic limits on landscape development in the northwestern Himalaya, Science, 276, 571-574, 1997.
    • Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A., and Ojha, T. P.: Decoupling of erosion and precipitation in the Himalayas, Nature, 426, 652-655, 2003.
    • Burns, J. W.: Some effects of logging and associated road construction on northern California streams, T. Am. Fish. Soc., 101, 1-17, 1972.
    • Burr, D. M., Perron, J. T., Lamb, M. P., Irwin, R. P., Howard, A. D., Collins, G. C., Sklar, L. S., Moore, J. M., Adamkovics, M., Baker, V. R., Drummond, S. A., and Black B. A.: Fluvial features on Titan: Insights from morphology and modeling, Geol. Soc. Am. Bull., 125, 299-321 doi:10.1130/B30612.1, 2012.
    • Coulthard, T. J.: Landscape evolution models: a software review, Hydrol. Process., 15, 165-173, 2001.
    • Dai, J. J., Lorenzato, S., and Rocke, D. M.: A knowledge-based model of watershed assessment for sediment, Environ. Modell. Softw., 19, 423-433, 2004.
    • Gaillardet, J., Dupré, B., and Allègre, C. J.: Geochemistry of large river suspended sediments: silicate weathering or recycling tracer?, Geochim. Cosmochim. Ac., 63, 4037-4051, 1999.
    • Goulden, M. L. and Bales, R. C.: Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion, P. Natl. Acad. Sci. USA, 111, 14071-14075, 2014.
    • Gupta, V. K. and Mesa, O. J.: Runoff generation and hydrologic response via channel network geomorphology-Recent progress and open problems. J. Hydrol., 102, 3-28, 1988.
    • Gupta, V. K. and Waymire, E. D.: Statistical self-similarity in river networks parameterized by elevation, Water Resour. Res., 25, 463-476, 1989.
    • Hack, J. T.: Stream-profile analysis and stream-gradient index, J. Res. US Geol. Surv., 1, 421-429, 1973.
    • Hahm, W. J., Riebe, C. S., Lukens, C. E., and Araki, S.: Bedrock composition regulates mountain ecosystems and landscape evolution. P. Natl. Acad. Sci. USA, 111, 3338-3343, 2014.
    • Holbrook, W., Riebe, C. S., Elwaseif, M., Hayes, J. L., BaslerReeder, K., Harry, D. L., Malazian, A., Dosseto, A., Hartsough, P. C., and Hopmans, J. W.: Geophysical constraints on deep weathering and water storage potential in the Southern Sierra Critical Zone Observatory, Earth Surf. Proc. Land., 39, 366-380, 2014.
    • Hunsaker, C. T. and Neary, D. G.: Sediment loads and erosion in forest headwater streams of the Sierra Nevada, California, in: Proceedings of a workshop for the International Association of Hydrological Sciences, General Assembly in Melbourne, Revisiting Experimental Catchment Studies in Forest Hydrology, Wallingford, UK, 195-204, 2012.
    • Hunsaker, C. T., Whitaker, T. W., and Bales, R. C.: Snowmelt runoff and water yield along elevation and temperature gradients in California's Southern Sierra Nevada, J. Am. Water Resour. As., 48, 667-678, 2012.
    • Jin, L., Ravella, R., Ketchum, B., Bierman, P. R., Heaney, P., White, T., and Brantley, S. L.: Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory, Geochim. Cosmochim. Ac., 74, 3669-3691, 2010.
    • Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. Land., 39, 38-61, 2014.
    • Leithold, E. L., Blair, N. E., and Perkey, D. W.: Geomorphologic controls on the age of particulate organic carbon from small mountainous and upland rivers, Global Biogeochem. Cy., 20, GB3022, doi:10.1029/2005GB002677, 2006.
    • Lifton, N. A. and Chase, C. G.: Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California, Geomorphology, 5, 77-114, 1992.
    • Lisle, T. E.: Effects of aggradation and degradation on riffle-pool morphology in natural gravel channels, northwestern California, Water Resour. Res., 18, 1643-1651, 1982.
    • Lomolino, M. A. R. K.: Elevation gradients of species-density: historical and prospective views, Global Ecol. Biogeogr., 10, 3-13, 2001.
    • Lukens, C. E., Riebe, C. S., Sklar, L. S., and Shuster, D. L.: Grain size bias in cosmogenic nuclide studies of stream sediment in steep terrain. J. Geophys. Res.-Earth, 121, 978-999, 2016.
    • Marshall, J. A. and Sklar, L. S.: Mining soil data bases for landscape-scale patterns in the abundance and size distribution of hillslope rock fragments, Earth Surf. Proc. Land., 37, 287-300, 2012.
    • Mest, S. C., Crown, D. A., and Harbert, W.: Watershed modeling in the Tyrrhena Terra region of Mars, J. Geophys. Res.-Planet, 115, E09001, doi:10.1029/2009JE003429, 2010.
    • Minder, J. R., Durran, D. R., and Roe, G. H.: Mesoscale controls on the mountainside snow line, J. Atmos. Sci., 68, 2107-2127, 2011.
    • Moussa, R.: What controls the width function shape, and can it be used for channel network comparison and regionalization?, Water Resour. Res., 44, W08456, doi:10.1029/2007WR006118, 2008.
    • Nash, J. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion of principles, J. Hydrol., 10, 282-290, 1970.
    • PRISM Climate Group: Oregon State University, available at: http: //prism.oregonstate.edu (last access: 11 January 2015)), 2014.
    • Raich, J. W., Russell, A. E., and Vitousek, P. M.: Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i, Ecology, 78, 707-721, 1997.
    • Reiners, P. W., Ehlers, T. A., Mitchell, S. G., and Montgomery, D. R.: Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades, Nature, 426, 645- 647, 2003.
    • Richey, J. E., Mertes, L. A., Dunne, T., Victoria, R. L., Forsberg, B. R., Tancredi, A. C., and Oliveira, E.: Sources and routing of the Amazon River flood wave, Global Biogeochem. Cy., 3, 191-204, 1989.
    • Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes, Earth Planet. Sc. Lett., 224, 547-562, 2004.
    • Riebe, C. S., Sklar, L. S. Lukens, C. E., and Shuster, D. L.: Climate and topography control the size of sediment produced on mountain slopes, P. Natl. Acad. Sci. USA, 112, 15574-15579, doi:10.1073/pnas.1503567112, 2015.
    • Rigon, R., Rinaldo, A., and Rodriguez-Iturbe, I.: On landscape selforganization, J. Geophys. Res.-Sol. Ea. (1978-2012), 99, 11971- 11993, 1994.
    • Rigon, R., Bancheri, M., Formetta, G., and de Lavenne, A.: The geomorphological unit hydrograph from a historicalcritical perspective, Earth Surf. Proc. Land., 41, 27-37, doi:10.1002/esp.3855, 2015.
    • Rinaldo, A., Vogel, G. K., Rigon, R., and Rodriguez-Iturbe, I.: Can one gauge the shape of a basin?, Water Resour. Res., 31, 1119- 1127, 1995.
    • Rodríguez-Iturbe, I., Rinaldo, A., Rigon, R., Bras, R. L., Marani, A., and Ijjász-Vásquez, E.: Energy dissipation, runoff production, and the three-dimensional structure of river basins, Water Resour. Res., 28, 1095-1103, 1992.
    • Roe, G. H.: Orographic precipitation, Annu. Rev. Earth Pl. Sc., 33, 645-671, 2005.
    • Sklar, L. S., Dietrich, W. E., Foufoula-Georgiou, E., Lashermes, B., and Bellugi, D.: Do gravel bed river size distributions record channel network structure?, Water Resour. Res., 42, W06D18, doi:10.1029/2006WR005035, 2006.
    • Sklar, L. S., Riebe, C. S., Marshall, J. A., Genetti, J., Leclere, S., Lukens, C. E., and Merces, V.: The problem of predicting the particle size distribution of sediment supplied by hillslopes to rivers, Geomorphology, doi:10.1016/j.geomorph.2016.05.005, in press, 2016.
    • Stock, G. M., Ehlers, T. A., and Farley, K. A.: Where does sediment come from? Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry, Geology, 34, 725-728, 2006.
    • Strahler, A. N.: Hypsometric (area-altitude) analysis of erosional topography, Geol. Soc. Am. Bull., 63, 1117-1142, 1952.
    • Tarboton, D. G.: A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33, 309-319, 1997.
    • Taylor, B. R. and Chauvet, E. E.: Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient, Hydrobiologia, 721, 239-250, 2014.
    • Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surf. Proc. Land., 35, 28-50, 2010.
    • Wahrhaftig, C.: Stepped topography of the southern Sierra Nevada, California, Geol. Soc. Am. Bull., 76, 1165-1190, 1965.
    • White, A. F. and Blum, A. E.: Effects of climate on chemical weathering in watersheds, Geochim. Cosmochim. Ac., 59, 1729-1747, 1995.
    • Willgoose, G.: A statistic for testing the elevation characteristics of landscape simulation models, J. Geophys. Res.-Sol. Ea., 99, 13987-13996, 1994.
    • Willgoose, G.: Mathematical modeling of whole landscape evolution, Annu. Rev. Earth Planet. Sci., 33, 443-459, 2005.
    • Willgoose, G. R., Hancock, G. R., and Kuczera, G.: A framework for the quantitative testing of landform evolution models, Prediction in Geomorphology, 195-216, 2003.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article