LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
K. Hilgersom; M. Zijlema; N. van de Giesen (2018)
Publisher: Copernicus Publications
Journal: Geoscientific Model Development
Languages: English
Types: Article
Subjects: QE1-996.5, Geology

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier–Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 350 355 360 365 370 375 380 Arnon, A., Lensky, N. G., and Selker, J. S.: High-resolution temperature sensing in the Dead Sea using fiber optics, Water Resour. Res., 50, 1756-1772, doi:10.1002/2013WR014935, 2014.
    • Batchelor, G.: An introduction to fluid dynamics, Cambridge Univ. Pr., 1967.
    • Bennett, G., Reilly, T., and Hill, M.: Technical training notes in ground-water hydrology: radial flow to a well, Tech. rep., US Geological Survey; Books and Open-File Reports, 1990.
    • Bergman, T. L., Incropera, F. P., and Lavine, A. S.: Fundamentals of heat and mass transfer, John Wiley & Sons, 2011.
    • Berthold, S. and Börner, F.: Detection of free vertical convection and double-diffusion in groundwater monitoring wells with geophysical borehole measurements, Environ. Geol., 54, 1547-1566, doi:10.1007/s00254- 007-0936-y, 2008.
    • Casulli, V. and Cheng, R. T.: Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Meth. Fl., 15, 629-648, doi:10.1002/fld.1650150602, 1992.
    • Casulli, V. and Stelling, G.: Numerical simulation of 3D quasi-hydrostatic, free-surface flows, J. Hydraul. Eng.- ASCE, 124, 678-686, 1998.
    • Cathcart, T. P. and Wheaton, F. W.: Modeling temperature distribution in freshwater ponds, Aquacult. Eng., 6, 237 - 257, doi:10.1016/0144-8609(87)90021-5, 1987.
    • De Louw, P., Vandenbohede, A., Werner, A., and Oude Essink, G.: Natural saltwater upconing by preferential groundwater discharge through boils, J. Hydrol., 490, 74 - 87, doi:10.1016/j.jhydrol.2013.03.025, 2013.
    • Dias, J. and Lopes, J.: Implementation and assessment of hydrodynamic, salt and heat transport models: The case of Ria de Aveiro Lagoon (Portugal), Environ. Modell. Softw., 21, 1 - 15, doi:10.1016/j.envsoft.2004.09.002, 2006.
    • Eckart, C. H.: The equation of state of water and sea water at low temperatures and pressures, Part 2 of Properties of water, American Journal of Science, 256, 225-240, 1958.
    • Fringer, O., Armfield, S., and Street, R.: Reducing numerical diffusion in interfacial gravity wave simulations, Int. J. Numer. Meth. Fl., 49, 301-329, 2005.
    • Galletti, C., Parente, A., and Tognotti, L.: Numerical and experimental investigation of a mild combustion burner, Combust. Flame, 151, 649-664, 2007.
    • Giestas, M., Pina, H. L., Milhazes, J. P., and Tavares, C.: Solar pond modeling with density and viscosity dependent on temperature and salinity, Int. J. Heat Mass Tran., 52, 2849 - 2857, doi:10.1016/j.ijheatmasstransfer.2009.01.003, 2009.
    • Hilgersom, K., Zijlema, M., and van de Giesen, N.: An axisymmetric hydrodynamical model: model code and data, TU Delft, doi:10.4121/uuid:c0dce972-5a04-476f-8f3f-4ac34f40da1b, 2016.
    • Hirsch, C.: Numerical Computation of Internal and External Flows, Wiley, Chichester, 1988.
    • Huppert, H. E. and Turner, J.: Double-diffusive convection, J. Fluid Mech., 106, 299-329, 1981.
    • Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J., and Özsoy, E.: The diffusive regime of doublediffusive convection, Prog. Oceanogr., 56, 461 - 481, doi:10.1016/S0079-6611(03)00026-0, 2003.
    • Kimura, S., Smyth, W., and Kunze, E.: Turbulence in a sheared, salt-fingering-favorable environment: Anisotropy and effective diffusivities, J. Phys. Oceanogr., 41, 1144-1159, 2011.
    • Kunze, E.: A review of oceanic salt-fingering theory, Prog. Oceanogr., 56, 399 - 417, doi:10.1016/S0079- 6611(03)00027-2, 2003.
    • Langevin, C. D.: Modeling Axisymmetric Flow and Transport, Ground Water, 46, 579-590, doi:10.1111/j.1745- 6584.2008.00445.x, 2008.
    • Launder, B. and Spalding, D.: The numerical computation of turbulent flows, Comput. Method Appl. M., 3, 269 - 289, doi:10.1016/0045-7825(74)90029-2, 1974.
    • Menguc, M. and Viskanta, R.: Radiative transfer in axisymmetric, finite cylindrical enclosures, J. Heat Transf., 108, 271-276, 1986.
    • Reilly, T. E. and Harbaugh, A. W.: Simulation of Cylindrical Flow to a Well Using the US Geological Survey Modular Finite-Difference Ground-Water Flow Model, Ground Water, 31, 489-494, 1993.
    • Ruddick, B.: A practical indicator of the stability of the water column to double-diffusive activity, Deep-Sea Res. Pt. I, 30, 1105-1107, 1983.
    • Ruddick, B. and Gargett, A. E.: Oceanic double-infusion: introduction, Prog. Oceanogr., 56, 381 - 393, doi:10.1016/S0079-6611(03)00024-7, 2003.
    • Schmid, M., Lorke, A., Wüest, A., Halbwachs, M., and Tanyileke, G.: Development and sensitivity analysis of a model for assessing stratification and safety of Lake Nyos during artificial degassing, Ocean Dynam., 53, 288-301, 2003.
    • Schmid, M., Lorke, A., Dinkel, C., Tanyileke, G., and Wüest, A.: Double-diffusive convection in Lake Nyos, Cameroon, Deep-Sea Res. Pt. I, 51, 1097 - 1111, doi:10.1016/j.dsr.2004.02.010, 2004.
    • Schubert, F., Peiffer, A., Köhler, B., and Sanderson, T.: The elastodynamic finite integration technique for waves in cylindrical geometries, J. Acoust. Soc. Am., 104, 2604-2614, 1998.
    • Shima, E., Matsuda, T., Takeda, H., and Sawada, K.: Hydrodynamic calculations of axisymmetric accretion flow, Mon. Not. R. Astron. Soc., 217, 367-386, doi:10.1093/mnras/217.2.367, 1985.
    • Stern, M. E.: Lateral mixing of water masses, Deep-Sea Res., 14, 747 - 753, doi:10.1016/S0011- 7471(67)80011-1, 1967.
    • Stommel, H. and Fedorov, K.: Small scale structure in temperature and salinity near Timor and Mindanao, Tellus A, 19, 1967.
    • Stommel, H., Arons, A., and Blanchard, D.: An oceanographical curiosity: the perpetual salt fountain, Deep-Sea Res., 3, 152-153, 1956.
    • Suárez, F., Tyler, S., and Childress, A.: A fully coupled, transient double-diffusive convective model for saltgradient solar ponds, Int. J. Heat Mass Tran., 53, 1718-1730, doi:10.1016/j.ijheatmasstransfer.2010.01.017, 2010.
    • Suárez, F., Ruskowitz, J. A., Childress, A. E., and Tyler, S. W.: Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling, Appl. Energ., 117, 1 - 10, doi:10.1016/j.apenergy.2013.12.005, 2014.
    • SWASH source code: http://swash.sourceforge.net/, accessed on: 30 May 2016, http://swash.sourceforge.net/, 2010.
    • Traxler, A., Stellmach, S., Garaud, P., Radko, T., and Brummeln, N.: Dynamics of fingering convection. Part 1 Small-scale fluxes and large-scale instabilities, J. Fluid Mech., 677, 530-553, doi:10.1017/jfm.2011.98, 2011.
    • Turner, J.: The coupled turbulent transports of salt and and heat across a sharp density interface, Int. J. Heat 425 Mass Tran., 8, 759 - 760, IN3-IN4, 761-767, doi:10.1016/0017-9310(65)90022-0, 1965.
    • Unesco: Tenth report of the joint panel on oceanographic tables and standards, UNESCO Tech. Paper in Marine Science, 36, 25, 1981.
    • Vega, L. A.: Ocean Thermal Energy Conversion Primer, Mar. Technol. Soc. J., 36, 25-35, doi:10.4031/002533202787908626, 2002.
    • 430 Washburn, E. W. and West, C. J.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology: Vol. 1-7, McGraw-Hill, 1933.
    • Wright, D. G.: An Equation of State for Use in Ocean Models: Eckart's Formula Revisited, J. Atmos. Oceanic Technol., 14, 735-740, doi:10.1175/1520-0426(1997)014<0735:AEOSFU>2.0.CO;2, 1997.
    • Yoshida, J. and Nagashima, H.: Numerical experiments on salt-finger convection, Prog. Oceanogr., 56, 435 - 435 459, doi:10.1016/S0079-6611(03)00032-6, 2003.
    • Zijlema, M. and Stelling, G.: Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure, Coast. Eng., 55, 780-790, 2008.
    • Zijlema, M. and Stelling, G. S.: Further experiences with computing non-hydrostatic free-surface flows involving water waves, Int. J. Numer. Meth. Fl., 48, 169-197, doi:10.1002/fld.821, 2005.
    • 440 Zijlema, M., Stelling, G., and Smit, P.: SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters, Coast. Eng., 58, 992 - 1012, doi:10.1016/j.coastaleng.2011.05.015, 2011.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
    52
    52%
  • No similar publications.

Share - Bookmark

Funded by projects

  • NWO | Monitoring and modeling sal...

Cite this article