LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
P. Bardhan; S. W. A. Naqvi; S. G. Karapurkar; D. M. Shenoy; S. Kurian; H. Naik (2017)
Publisher: Copernicus Publications
Journal: Biogeosciences
Languages: English
Types: Article
Subjects: Ecology, QH540-549.5, QE1-996.5, QH501-531, Geology, Life

Classified by OpenAIRE into

ACM Ref: TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
Isotopic composition of nitrate (δ15N and δ18O) and particulate organic matter (POM; δ15N and δ13C) were measured in the Tillari Reservoir, located at the foothills of the Western Ghats, Maharashtra, western India. The reservoir, which is stratified during spring–summer and autumn seasons but gets vertically mixed during the southwest monsoon (SWM) and winter, is characterized by diverse redox nitrogen transformations in space and time. The δ15N and δ18O values of nitrate were low (δ15N  =  2–10 ‰, δ18O  =  5–8 ‰) during normoxic conditions but increased gradually (the highest at δ15N  =  27 ‰, δ18O  =  29 ‰) when anoxic conditions facilitated denitrification in the hypolimnion during spring–early summer. Once nitrate was fully utilized and sulfidic conditions set in, NH4+ became the dominant inorganic N species, with δ15N ranging from 1.3 to 2.6 ‰. Low δ15N (∼ −5 ‰) and δ13C (−37 to −32 ‰) of POM co-occurring with high NH4+ and CH4 in sulfidic bottom waters were probably the consequence of microbial chemosynthesis. Assimilation of nitrate in the epilimnion was the major controlling process on the N isotopic composition of POM (δ15N  =  2–6 ‰). Episodic low δ15N values of POM (−2 to 0 ‰) during early summer, coinciding with the absence of nitrate, might arise from N fixation, although further work is required to confirm the hypothesis. δ13C POM in the photic zone ranged between −29 and −27 ‰ for most parts of the year. The periods of mixing were characterized by uniform δ15N–NO3 and δ18O–NO3 at all depths. Higher POM (particulate organic carbon, POC, as well as particulate organic nitrogen, PON) contents and C ∕ N values with lower δ13C POM during the SWM point to allochthonous inputs. Overall, this study, the first of its kind in the Indian subcontinent, provides an insight into biogeochemistry of Indian reservoirs, using stable carbon and nitrogen isotopes as a tool, where the monsoons play an important role in controlling vertical mixing and dynamics of carbon and nutrients.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Altabet, M. A.: Variations in nitrogen isotopic composition between sinking and suspended particles: Implications for nitrogen cycling and particle transformation in the open ocean, Deep-Sea Res., 35, 535-554, 1988.
    • Altabet, M. A.: Isotopic tracers of the marine nitrogen cycle, in: Marine organic matter: Chemical and biological markers, edited by: Volkman, J., The handbook of environmental chemistry, Springer-Verlag, 251-293, 2006.
    • Bastviken, D., Cole, J. J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cy., 18, GB4009, doi:10.1029/2004GB002238, 2004.
    • Böttcher, J., Strebel, O., Voerkelius, S., and Schmidt, H.-L.: Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hydrol., 114, 413-424, doi:10.1016/0022-1694(90)90068-9, 1990.
    • Brandes, J. A., Devol, A. H., Yoshinari, T., Jayakumar, D. A., and Naqvi, S. W. A.: Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles, Limnol. Oceanogr., 43, 1680-1689, doi:10.4319/lo.1998.43.7.1680, 1998.
    • Bratkic, A., Šturm, M., Faganeli, J., and Ogrinc, N.: Semiannual carbon and nitrogen isotope variations in the water column of Lake Bled, NW Slovenia, Biogeosciences, 9, 1-11, doi:10.5194/bg-9-1-2012, 2012.
    • Burns, D. A. and Kendall, C.: Analysis of 15N and 18O sources in runoff at two watersheds in the Catskill Mountains of New York, Water Resour. Res., 38, 1051, doi:10.1029/2001WR000292, 2002.
    • Carpenter, E. J., Harvey, H. R., Fry, B., and Capone, D. G.: Biogeochemical tracers of the marine cyanobacterium Trichodesmium, Deep-Sea Res. Pt. I, 44, 27-38, 1997.
    • Casciotti, K. L., Sigman, D. M., Galanter Hastings, M., Bohlke, J. K., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 4905-4912, 2002.
    • Casciotti, K. L., Sigman, D. M., and Ward, B. B.: Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria, Geomicrobiol. J., 20, 335-353, 2003.
    • Chen, F. J. and Jia, G. D.: Spatial and seasonal variations in 13C and 15N of particulate organic matter in a damcontrolled subtropical river, River Res. Appl., 25, 1169-1176, doi:10.1002/rra.1225, 2009.
    • Chen, F., Jia, G., and Chen, J.: Nitrate sources and watershed denitrification inferred from dual isotopes in the Beijiang River, South China, Biogeochemistry, 94, 163-174, doi:10.1007/s10533-009-9316-x, 2009.
    • Chen, Z. X., Yu, L., Liu, W. G., Lam, M. H. W., Liu, G. J., and Yin, X. B.: Nitrogen and oxygen isotopic compositions of watersoluble nitrate in Taihu Lake water system, China: implication for nitrate sources and biogeochemical process, Environ Earth Sci., 1, 217-223, 2014.
    • Christofi, N., Preston, T., and Stewart, W. D. P.: Endogenous nitrate production in an experimental enclosure during summer stratification, Water Res., 15, 343-349, doi:10.1016/0043- 1354(81)90039-7, 1981.
    • Cifuentes, L. A., Sharp, J. H., and Fogel, M. L.: Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary, Limnol. Oceanogr., 33, 1102-1115, 1988.
    • Cline, J. D.: Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454-458, 1969.
    • Dähnke, K. and Thamdrup, B.: Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea, Biogeosciences, 10, 3079-3088, doi:10.5194/bg-10- 3079-2013, 2013.
    • Delwiche, C. C. and Stein, P. L.: Nitrogen isotope fractionation in soil and microbial reactions, Environ. Sci. Technol., 4, 929-935, 1970.
    • Feigin, A., Shearer, G., Kohl, D. H., and Commoner, B.: The amount and nitrogen-15 content of nitrate in soil profiles from two central Illinois fields in a corn-soybean rotation, Soil Sci. Soc. Am. Pro., 38, 465-471, 1974.
    • Finlay, J. C., Sterner, R. W., and Kumar, S.: Isotopic evidence for inlake production of accumulating nitrate in Lake Superior, Ecol. Appl., 17, 2323-2332, doi:10.1890/07-0245.1, 2007.
    • Granger, J., Sigman, D. M., Lehmann, M. F., and Tortell, P. D.: Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria, Limnol. Oceanogr., 53, 2533-2545, 2008.
    • Grasshoff, K., Ehrhardt, M., and Kremling, K.: Methods of seawater analysis, 2nd Edn., 419 pp., Weinheim: Verlag Chemie, 1983.
    • Gu, B., Chapman, A. D., and Schelske, C. L.: Factors controlling seasonal variations in stable isotope composition of particulate organic matter in a soft water eutrophic lake, Limnol. Oceanogr., 51, 2837-2848, 2006.
    • Hadas, O., Altabet, M. A., and Agnihitori, R.: Seasonally varying nitrogen isotope biogeochemistry of particulate organic matter in lake Kinneret, Israel, Limnol. Oceanogr., 54, 75-85, 2009.
    • Heaton, T. H. E.: Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review, Chem. Geol., 59, 87-102, 1986.
    • Hoch, M. P., Fogel, M. L., and Kirchman, D. L.: Isotope fractionation associated with ammonium uptake by a marine bacterium, Limnol. Oceanogr., 37, 1447-1459, 1992.
    • Holmes, R. M., McClelland, J. W., Sigman, D. M., Fry, B., and Peterson, B. J.: Measuring 15N-NH4C in marine, estuarine and fresh waters: an adaptation of the ammonia diffusion method for samples with low ammonium concentrations, Mar. Chem., 60, 235-243, doi:10.1016/S0304-4203(97)00099-6, 1998.
    • Hu, H., Bourbonnais, A., Larkum, J., Bange, H. W., and Altabet, M. A.: Nitrogen cycling in shallow low-oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen isotopes, Biogeosciences, 13, 1453-1468, doi:10.5194/bg-13-1453-2016, 2016.
    • Junet, A. de, Abril, G., Guèrin, F., Billy, I., and Wit, R. de.: A multitracers analysis of sources and transfers of particulate organic matter in a tropical reservoir (Petit Saut, French Guiana), River Res. Appl., 25, 253-271, doi:10.1002/rra.1152, 2009.
    • Kendall, C.: Tracing nitrogen sources and cycling in catchments, in: Isotope tracers in catchment hydrology, edited by: Kendall, C. and McDonnell, J. J., Elsevier, Amsterdam, the Netherlands, 519-576, 1998.
    • Kendall, C., Silva, S. R., and Kelly, V. J.: Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States, Hydrol. Process., 15, 1301-1346, doi:10.1002/hyp.216, 2001.
    • Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs of nitrogen to ecosystems, Chapter 12, in: Stable Isotopes in Ecology and Environmental Science, edited by: Michener, R. H. and Lajtha, K., 2nd Edn., Blackwell Publishing, 375-449, 2007.
    • Kritee, K., Sigman, D. M., Granger, J., Ward, B. B., Jayakumar, A., and Deutsch, C.: Reduced isotope fractionation by denitrification under conditions relevant tothe ocean, Geochim. Cosmochim. Ac., 92, 243-259, doi:10.1016/j.gca.2012.05.020, 2012.
    • Kurian, S., Roy, R., Repeta, D. J., Gauns, M., Shenoy, D. M., Suresh, T., Sarkar, A., Narvenkar, G., Johnson, C. G., and Naqvi, S. W. A.: Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India, Biogeosciences, 9, 2485-2495, doi:10.5194/bg-9-2485-2012, 2012.
    • Lehmann, M. F., Reichert, P., Bernasconi, S. M., Barbieri, A., and McKenzie, J.: Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone, Geochim. Cosmochim. Ac., 67, 2529-2542, doi:10.1016/S0016- 7037(03)00085-1, 2003.
    • Lehmann, M. F., Bernasconi, S., McKenzie, J., Barbieri, A., Simona, M., and Veronesi, M.: Seasonal variation of the 13C and 15N of particulate and dissolved carbon and nitrogen in Lake Lugano: Constraints on biogeochemical cycling in a eutrophic lake, Limnol. Oceanagr., 49, 415-429, 2004.
    • Maya, M. V., Karapurkar, S. G., Naik, H., Roy, R., Shenoy, D. M., and Naqvi, S. W. A.: Intra-annual variability of carbon and nitrogen stable isotopes in suspended organic matter in waters of the western continental shelf of India, Biogeosciences, 8, 3441- 3456, doi:10.5194/bg-8-3441-2011, 2011.
    • McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater, Anal. Chem., 77, 5589-5595, doi:10.1021/ac050528s, 2005.
    • Mengis, M., Schiff, S. L., Harris, M., English, M. C., Aravena, R., Elgood, R. J., and MacLean, A.: Multiple geochemical and isotopic approaches for assessing ground water NO3 elimination in a riparian zone, Ground Water, 37, 448-457, 1999.
    • Naik, H., Shenoy, D. M., and Naqvi, S. W. A.: Biogeochemical cycling of nitrogen in the Tillari Reservoir, in preparation, 2017.
    • Narvenkar, G., Naqvi, S. W. A., Kurian, S., Shenoy, D. M., Pratihary, A. K., Naik, H., Patil, S., Sarkar, A., and Gauns, M.: Dissolved methane in Indian freshwater reservoirs, Environ. Monit. Assess., 185, 6989-6999, 2013.
    • Olleros, T.: Kinetische Isotopeneffekte der Arginase- und Nitratreduktase-Reaktion: Ein Beitrag zur Aufklärung der entsprechenden Reaktionsmechanismen, PhD dissertation, Technische Universität München-Weihenstephan, Germany, 1983.
    • Pang, P. C. and Nriagu, J. O.: Isotopic variations of the nitrogen in Lake Superior, Geochim. Cosmochim. Ac., 41, 811-814, doi:10.1016/0016-7037(77)90051-5, 1977.
    • Prokopenko, A. A. and Williams, D. F.: Depleted methane-derived carbon in waters of Lake Baikal, Siberia, Hydrobiol., 544, 279- 288, 2005.
    • Savoye, N., David, V., Morisseau, F., Etcheber, H., Abril, G., Billy, I., Charlier, K., Oggian, G., Derriennic, H., and Sautour, B.: Origin and composition of particulate organic matter in a macrotidal turbid estuary: the Gironde Estuary, France, Estuar. Coast. Shelf S., 108, 16-28, doi:10.1016/j.ecss.2011.12.005, 2012.
    • Seitzinger, S. P.: Denitrification in freshwater and coastal marine ecosystems: Ecological and Geochemical significance, Limnol. Oceanogr., 33, 702-724, 1988.
    • Shenoy, D. M., Naik, H., Kurian, S., Gauns, M., and Naqvi, S. W. A.: Impact of summer stratification and winter mixing on hydrogen sulfide production in a tropical freshwater reservoir, in preparation, 2017.
    • Sigman, D. M., Granger, J., DiFiore, P. J., Lehmann, M. M., Ho, R., Cane, G., and van Geen, A.: Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin, Global Biogeochem. Cy., 19, GB4022, doi:10.1029/2005GB002458, 2005.
    • Subramanya, K.: Engineering Hydrology, 4th Edn., McGraw-Hill Publishing, New Delhi, 2013.
    • Sukumar, R., Suresh, H. S., and Ramesh, R.: Climate change and its impact on tropical montane ecosystems in southern India, J. Biogeogr., 22, 533-536, 1995.
    • Thibodeau, B., Hélie, J.-F., and Lehmann, M. F.: Variations of the nitrate isotopic composition in the St. Lawrence River caused by seasonal changes in atmospheric nitrogen inputs, Biogeochemistry, 115, 287-298, 2013.
    • Thunell, R. C., Sigman, D. M., Muller-Karger, F., Astor, Y., and Varela, R.: Nitrogen isotope dynamics of the Cariaco Basin, Venezuela, Global Biogeochem. Cy., 18, GB3001, doi:10.1029/2003GB002185, 2004.
    • Voss, M., Dippner, J. W., and Montoya, J. P.: Nitrogen isotope patterns in the oxygen-deficient waters of the Eastern Tropical North Pacific Ocean, Deep-Sea Res. Pt. I, 48, 1905-1921, doi:10.1016/S0967-0637(00)00110-2, 2001.
    • Wada, E.: Nitrogen isotope fractionation and its significance in biogeochemical processes occuring in marine environments, in: Isotope Marine Chemistry, edited by: Goldberg, E. D., Horibe, Y., and Saruhashi, K., Uchida Rokakuho Pub. Co., Tokyo, 375-398, 1980.
    • Wada, E. and Hattori, A.: Nitrogen isotope effects in the assimilation of inorganic compounds by marine diatoms, Geomicrobiol. J., 1, 85-101, 1978.
    • Wankel, S. D., Kendall, C., Pennington, J. T., Chavez, F. P., and Paytan, A.: Nitrification in the euphotic zone as evidenced by nitrate dual isotopic composition: Observations from Monterey Bay, California, Global Biogeochem. Cy., 21, GB2009, doi:10.1029/2006gb002723, 2007.
    • Wenk, C. B., Zopfi, J., Blees, J., Veronesi, M., Niemann, H., and Lehmann, M. F.: Community N and O isotope fractionation by sulfide-dependent denitrification and anammox in a stratified lacustrine water column, Geochim. Cosmochim. Ac., 125, 551- 563, 2014.
    • Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence, Geochim. Cosmochim. Ac., 50, 693-709, 1986.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article