LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Y. J. Liu; I. Herdlinger-Blatt; K. A. McKinney; S. T. Martin (2013)
Publisher: Copernicus Publications
Journal: Atmospheric Chemistry and Physics
Languages: English
Types: Article
Subjects: Chemistry, QD1-999, Physics, QC1-999
The photo-oxidation chemistry of isoprene (ISOP; C5H8) was studied in a continuous-flow chamber under conditions such that the reactions of the isoprene-derived peroxyl radicals (RO2) were dominated by the hydroperoxyl (HO2) pathway. A proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) with switchable H3O+ and NO+ reagent ions was used for product analysis. The products methyl vinyl ketone (MVK; C4H6O) and methacrolein (MACR; C4H6O) were differentiated using NO+ reagent ions. The MVK and MACR yields via the HO2 pathway were (3.8 ± 1.3)% and (2.5 ± 0.9)%, respectively, at +25 °C and < 2% relative humidity. The respective yields were (41.4 ± 5.5)% and (29.6 ± 4.2)% via the NO pathway. Production of MVK and MACR via the HO2 pathway implies concomitant production of hydroxyl ((6.3 ± 2.1)%) and hydroperoxyl ((6.3 ± 2.1)%) radicals, meaning a HOx recycling of (12.6 ± 4.2)% given that HO2 was both a reactant and product. Other isoprene oxidation products, believed to be mostly organic hydroperoxides, also contributed to the ion intensity at the same mass-to-charge (m/z) ratios as the MVK and MACR product ions for HO2-dominant conditions. These products were selectively removed from the gas phase by placement of a cold trap (−40 °C) inline prior to the PTR-TOF-MS. When incorporated into regional and global chemical transport models, the yields of MVK and MACR and the concomitant HOx recycling reported in this study can improve the accuracy of the simulation of the HO2 reaction pathway of isoprene, which is believed to be the fate of approximately half of atmospherically produced isoprene-derived peroxy radicals on a global scale.

Share - Bookmark

Funded by projects

  • NSF | MRI-R2: Acquisition of a Pr...

Cite this article