LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dilmi , Mohamed Djallel; Mallet , Cécile; Barthès , Laurent; Chazottes , Aymeric (2017)
Publisher: European Geosciences Union
Journal: Atmospheric Measurement Techniques
Languages: English
Types: Article
Subjects: TA170-171, [ SDU.STU.ME ] Sciences of the Universe [physics]/Earth Sciences/Meteorology, Earthwork. Foundations, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Environmental engineering, TA715-787
Rain time series records are generally studied using rainfall rate or accumulation parameters, which are estimated for a fixed duration (typically 1 min, 1 h or 1 day). In this study we use the concept of rain events. The aim of the first part of this paper is to establish a parsimonious characterization of rain events, using a minimal set of variables selected among those normally used for the characterization of these events. A methodology is proposed, based on the combined use of a genetic algorithm (GA) and self-organizing maps (SOMs). It can be advantageous to use an SOM, since it allows a high-dimensional data space to be mapped onto a two-dimensional space while preserving, in an unsupervised manner, most of the information contained in the initial space topology. The 2-D maps obtained in this way allow the relationships between variables to be determined and redundant variables to be removed, thus leading to a minimal subset of variables. We verify that such 2-D maps make it possible to determine the characteristics of all events, on the basis of only five features (the event duration, the peak rain rate, the rain event depth, the standard deviation of the rain rate event and the absolute rain rate variation of the order of 0.5). From this minimal subset of variables, hierarchical cluster analyses were carried out. We show that clustering into two classes allows the conventional convective and stratiform classes to be determined, whereas classification into five classes allows this convective–stratiform classification to be further refined. Finally, our study made it possible to reveal the presence of some specific relationships between these five classes and the microphysics of their associated rain events.
  • No references.
  • No related research data.
  • No similar publications.