Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
B. Ning; W. Wan; L. Liu (2006)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Science, Physics, QC1-999, QC801-809
International audience; The diurnal, seasonal, and solar activity variations of the ionogram derived scale height around the ionospheric F-layer peak (Hm) are statistically analyzed at Wuhan (114.4° E, 30.6° N) and the yearly variations of Hm are also investigated for Wuhan and 12 other stations where Hm data are available. Hm, as a measure of the slope of the topside electron number density profiles, is calculated from the bottomside electron density profiles derived from vertical sounding ionograms using the UMLCAR SAO-Explorer. Results indicate that the value of median Hm increases with increasing solar flux. Hm is highest in summer and lowest in winter during the daytime, while it exhibits a much smaller seasonal variation at night. A common feature presented at these 13 stations is that Hm undergoes a yearly annual variation with a maximum in summer during the daytime. The annual variation becomes much weaker or disappears from late night to pre-sunrise. In addition, a moderate positive correlation is found between Hm with hmF2 and a strong correlation between the bottomside thickness parameter B0 and Hm. The latter provides a new and convenient way for empirical modeling the topside ionospheric shape only from the established B0 parameter set.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Belehaki, A., Jakowski, N., and Reinisch, B.: Comparison of ionospheric ionization measurements over Athens over Athens using ground ionosonde and GPS derived TEC values, Radio Sci., 38(6), 1105, doi:10.1029/2003RS002868, 2003.
    • Belehaki, A., Marinov, P., Kutiev, I., Jakowski, N., and Stankov, S.: Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside digisonde profiles, Adv. Space Res., doi:10.1016/j.asr.2005.09.015, in press, 2006.
    • Bilitza, D.: International reference ionosphere 2000, Radio Sci., 36(2), 261-275, 2001.
    • Booker, H. G.: Fitting of multi-region ionospheric profiles of electron density by a single analytic function of height, J. Atmos. Terr. Phys., 39, 619-623, 1977.
    • Buonsanto, M. J., Starks, M. J., Titheridge, J. E., Richards, P. G., and Miller, K. L.: Comparison of techniques for derivation of neutral meridional winds from ionospheric data, J. Geophys. Res., 102, 14 477-14 484, 1997.
    • Di Giovanni, G. and Radicella, S. M.: An analytical model of the electron density profile in the ionosphere, Adv. Space Res., 10(11), 27-30, 1990.
    • Goodwin, G. L., Silby, J. H., Lynn, K. J. W., Breed, A. M., and Essex, E. A.: GPS satellite measurements: ionospheric slab thickness and total electron content, J. Atmos. Terr. Phys., 57(14), 1723-1732, 1995.
    • Hedin, A. E., Fleming, E. L., Manson, A. H., et al.: Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Terr. Phys., 58(13), 1421-1447, 1996.
    • Huang, X. and Reinisch, B. W.: Vertical electron profiles from the Digisonde network, Adv. Space Res., 18(6), 121-129, 1996.
    • Huang X. and Reinisch, B. W.: Vertical electron content from ionograms in real time, Radio Sci., 36(2), 335-342, 2001.
    • Jayachandran, B., Krishnankutty, T. N., and Gulyaeva, T. L.: Climatology of ionospheric slab thickness, Ann. Geophys., 22, 25-33, 2004.
    • Kawamura, S., Balan, N., Otsuka, Y., and Fukao, S.: Annual and semiannual variations of the midlatitude ionosphere under low solar activity, J. Geophys. Res., 107(A8), doi:10.1029/2001JA000267, 2002.
    • Lei, J., Liu, L., Wan, W., and Zhang, S.-R.: Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill, Radio Sci., 40, RS2008, doi:10.1029/2004RS003106, 2005.
    • Liu, L., Luan, X., Wan, W., Ning, B., and Lei, J.: A new approach to the derivation of dynamic information from ionosonde measurements, Ann. Geophys., 21(11), 2185-2191, 2003.
    • Liu, L., Luan, X., Wan, W., Lei, J., and Ning, B.: Solar activity variations of equivalent winds derived from global ionosonde data, J. Geophys. Res., 109, doi:10.1029/2004JA010574, 2004.
    • Oyama, K.-I., Watanabe, S., Su, Y., Takahashi, T., and Hiro, K.: Seasonal, local time, and longitudinal variations of electron temperature at the height of ∼600 km in the low latitude region, Adv. Space Res., 18(6), 269-278, 1996.
    • Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430, 2002.
    • Rawer, K.: Synthesis of ionospheric electron density profiles with Epstein functions, Adv. Space Res., 8(4), 191-198, 1988.
    • Rawer, K., Bilitza, D., and Gulyaeva, T. L.: New formulas for IRI electron density profile in the topside and middle ionosphere. Adv. Space Res., 5(7), 3-12, 1985.
    • Reinisch, B. W. and Huang, X.: Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms, Radio Sci., 18(3), 477-492, 1983.
    • Reinisch, B. W. and Huang, X.: Deducing topside profiles and total electron content from bottomside ionograms, Adv. Space Res., 27(1), 23-30, 2004.
    • Reinisch, B. W., Huang, X., Belehaki, A., Shi, J., Zhang, M., and Ilma, R.: Modeling the IRI topside profile using scale height from ground-based ionosonde measurements, Adv. Space Res., 34, 2026-2031, 2004.
    • Richards, P. G., Fennelly, J. A., and Torr, D. G.: EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99(A5), 8981-8992, 1994.
    • Richards, P. G.: Seasonal and solar cycle variations of the ionospheric peak electron density: comparison of measurement and models, J. Geophys. Res., 106(A12), 12 803-12 819, 2001.
    • Rishbeth, H., Ganguly, S., and Walker, J. C. G.: Field-aligned and field-perpendicular velocities in the ionospheric F2 layer, J. Atmos. Terr. Phys., 40, 767-784, 1978.
    • Sharma, D. K., Rai, J., Israil, M., and Subrahmanyam, P.: Diurnal, seasonal and longitudinal variations of ionospheric temperatures of the topside F region over the Indian region during solar minimum (1995-1996), J. Atmos. Solar-Terr. Phys., 67, 269-274, 2005.
    • Stankov, S. M., Jakowski, N., Heise, S., Muhtarov, P., Kutiev, I., and Warnant, R.: A new method for reconstruction of the vertical electron density distribution in the upper ionosphere and plasmasphere, J. Geophys. Res., 108(A5), 1164, doi:10.1029/2002JA009570, 2003.
    • Torr, M. R. and Torr, D. G.: The seasonal behaviour of the F2-layer of the ionosphere, J. Atmos. Terr. Phys., 35, 2237-2251, 1973.
    • Wu, J., Long, Q., and Quan, K.: A statistical study and modling of the ionospheric TEC and the slab thickness with observations at Xinxiang, China, Chinese J. Radio Sci., 13(3), 291-296, 1998.
    • Yu, T., Wan, W., Liu, L., and Zhao, B.: Global scale annual and semi-annual variations of daytime NmF2 in the high solar activity years, J. Atmos. Solar-Terr. Phys., 66, 1691-1701, 2004.
  • No related research data.
  • No similar publications.