Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mielich, J.; Bremer, J. (2013)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
A new comprehensive data collection by Damboldt and Suessmann (2012a) with monthly foF2 and M(3000)F2 median values is an excellent basis for the derivation of long-term trends in the ionospheric F2 region. Ionospheric trends have been derived only for stations with data series of at least 22 years (124 stations with foF2 data and 113 stations with M(3000)F2 data) using a twofold regression analysis depending on solar and geomagnetic activity.

Three main results have been derived:

Firstly, it could be shown that the solar 10.7 cm radio flux F10.7 is a better index for the description of the solar activity than the relative solar sunspot number R as well as the solar EUV proxy E10.7.

Secondly, the global mean foF2 and hmF2 trends derived for the interval between 1948 and 2006 are in surprisingly good agreement with model calculations of an increasing atmospheric greenhouse effect (Rishbeth and Roble, 1992).

Thirdly, during the years 2007 until 2009, the hmF2 values and to a smaller amount the foF2 values strongly decrease. The reason for this effect is a reduction of the thermospheric density and ionization due to a markedly reduced solar EUV irradiation and extremely small geomagnetic activity during the solar cycle 23/24 minimum.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alfonsi, L., de Franceschi, G., Perrone, L., and Materassi, M.: Long-term trends of the critical frequency of the F2 layer at northern and southern high latitude regions, Phys. Chem. Earth, 27, 607-612, 2002.
    • Bencze, P.: Geographical distribution of long-term changes in the height of the maximum electron density of the F region: A nonmigrating tidal effect?, J. Geophys. Res., 114, A06304, doi:10.1029/2008JA013492, 2009.
    • Bilitza, D., Sheikh, N. M., and Eyfrig, R.: A global model for the height of the F2-peak using M3000 values from CCIR, Telecommunication Journal, 46, 549-553, 1979.
    • Brasseur, G. and de Rudder, A.: The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations, J. Geophys. Res., 92, 10903-10920, 1987.
    • Bremer, J.: Ionospheric trends in mid-latitudes as a possible indicator of the atmospheric greenhouse effect, J. Atmos. Terr. Phys., 54, 1505-1511, 1992.
    • Bremer, J.: Trends in the thermosphere derived from global ionosonde observations, Adv. Space Res., 28, 997-1006, 2001.
    • Bremer, J.: Investigations of long-term trends in the ionosphere with world-wide ionosonde observations, Adv. Radio Sci., 2, 253- 258, 2004, http://www.adv-radio-sci.net/2/253/2004/.
    • Bremer, J., Damboldt, T., Mielich, J., and Suessmann, P.: Comparing long-term trends in the ionospheric F2-region with two different methods, J. Atmos. Solar-Terr. Phys., 77, 174-185, 2012.
    • CIRA: COSPAR International Reference Atmosphere, Akadenie Verlag, Berlin, 1972.
    • Cnossen, I. and Richmond, A. D.: Modelling the effect of changes in the Earth's magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters, J. Atmos. Solar-Terr. Phys., 70, 1512-1524, doi:10.1016/j.jastp.2008.05.003, 2008.
    • Damboldt, T. and Suessmann, P.: Consolidated Database of worldwide measured monthly medians of ionospheric characteristics foF2 and M(3000)F2, INAG Bulletin on the Web, INAG-73, www.ips.gov.au/IPSHosted/INAG/web-73/index.html, 2012a.
    • Damboldt, T. and Suessmann, P.: Statistic of long-term ionospheric measurements, Adv. Radio Sci., 10, 255-258, 2012b, http://www.adv-radio-sci.net/10/255/2012/.
    • Danilov, A. D.: The method of determination of the long-term trends in the F2 region independent of geomagnetic activity, Ann. Geophys., 20, 511-521, doi:10.5194/angeo-20-511-2002, 2002.
    • Danilov, A. D.: Long-term trends of foF2 independent of geomagnetic activity, Ann. Geophys., 21, 1167-1176, doi:10.5194/angeo-21-1167-2003, 2003.
    • de Adler, N. O., Elias, A. G., and Heredia, T.: Long-term trend in the ionospheric F2 layer peak height at a southern low latitude station, Phys. Chem. Earth, 27, 613-615, 2002.
    • Emmert, J. T., Jean, J. L., and Picone, J. M.: Record-low thermospheric density during the 2008 solar minimum, Geophys. Res. Lett., 37, L12102, doi:10.1029/2010GL043671, 2010.
    • Floyd, L., Newmark, J., Cook, J., Herring, L., and McMullin, D.: UV spectral irradiances and solar indices, J. Atmos. Solar-Terr. Phys., 67, 3-15, 2005.
    • Hall, C. M. and Cannon, P. S.: Trends in foF2 above Tromsø (69◦ N, 19◦ E), Geophys. Res. Lett., 29, 2128, doi:10.1029/2002GL016259, 2002.
    • Hargreaves, J. K.: The upper atmosphere and solar-terrestrial relations, Van Nostrand Reinhold Company, New York-CincinnetiToronto-London-Melbourne, 1979.
    • Houghton, J. T., Ding, Y., Groggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A.: Climate Change: The Scientific Basis, Contribution of WG I to the 3rd Assessment Report of the IPCC, Cambridge, University Press, 2001.
    • ITU: Recommendation ITU-R P.1239-2, International Telecommunication Union, Geneva, 2009.
    • Jarvis, M. J., Jenkins, B., and Rodgers, G. A.: Southern hemisphere observations of long-term decrease in F region altitude and thermospheric wind providing possible evidence for global thermospheric cooling, J. Geophys. Res., 103, 20775-29787, 1998.
    • Jarvis, M. J., Clilverd, M. A., and Ulich, T.: Methodological influences on F-region peak height trend analyses, Phys. Chem. Earth, 27, 589-594, 2002.
    • Lastovicka, J., Mikhailov, A. V., Ulich, T., Bremer, J., Elias, A. G., Ortis de Adler, N., Jara, V., Abarca del Rio, R., Foppiano, A. P., Ovalle, E., and Danilov, A. D.: Long-term trends in foF2: A comparison of various methods, J. Atmos. Solar-Terr. Phys., 68, 1854-1870, 2006.
    • Lukianova, R. and Mursula, K.: Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23, J. Atmos. Solar-Terr. Phys., 73, 235-240, 2011.
    • Mikhailov, A. V.: The geomagnetic control concept of the F2-layer parameter long-term trends, Phys. Chem. Earth, 27, 595-606, 2002.
    • Mikhailov, A. V., Marin, D., Leschinskaya, T. Yu., and Herraiz, M.: A revised approach to the foF2 long-term trends analysis, Ann. Geophys., 20, 1663-1675, doi:10.5194/angeo-20-1663- 2002, 2002.
    • Qian, L., Burns, A. G., Solomon, S. C., and Roble, R. G.: The effect of carbon dioxide cooling on trends in the F2-layer ionosphere, J. Atmos. Solar-Terr. Phys., 71, 1592-1601, 2009.
    • Qian, L., Lastovicka, J., Roble, R. G., and Solomon, S. C.: Progress in observations and simulations of global change in the upper atmosphere, J. Geophys. Res., 116, A00H03, doi:10.1029/2010JA016317, 2011.
    • Rishbeth, H.: A greenhouse effect in the ionosphere?, Planet. Space Sci., 38, 945-948, 1990.
    • Rishbeth, H. and Roble, R. G.: Cooling of the upper atmosphere by enhanced greenhouse gases - Modelling of the thermospheric and ionospheric effects, Planet. Space Sci., 40, 1011-1026, 1992.
    • Roble, R. G. and Dickinson, R. E.: How will changes of carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16, 1441-1444, 1989.
    • Shimazaki, T.: World wide daily variations in the height of the maximum electron density in the ionospheric F2 layer, J. Radio Res. Labs., Japan, 2, 85-97, 1955.
    • Solomon, S. C., Woods, T. N., Didkovsty, L. V., Emmert, J. T., and Qian, L.: Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum, Geophys. Res. Lett., 37, L16103, doi:10.1029/2010GL044468, 2010.
    • Taubenheim, J.: Statistische Auswertung geophysikalischer und meteorologischer Daten, Akad. Verlagsgesellschaft Geest und Portig K.-G., Leipzig, 1969.
    • Tobiska, W. K., Woods, T., Eparvier, F., Viereck, R., Floyd, L., Bouwer, D., Rottmann, G., and White, O. R.: The SOLAR2000 empirical solar irradiance model and forecast tool, J. Atmos. Solar-Terr. Phys., 62, 1233-1250, 2000.
    • Ulich, T.: Solar variability and long-term trends in the atmosphere, Sodankyla¨ Geophysical Observatory Publications, No. 87, Oulu, 2000.
    • Ulich, T., Clilverd, M. A., Jarvis, M. J., and Rishbeth, H.: Unravelling signs of global change in the ionosphere, in: Space Weather - Research towards applications in Europe, edited by: Lilensten, J., Astrophys. Space Library, 344, 95-105, Springer, Dordrecht, The Netherlands, 2006.
    • Wintoft, P.: The variability of solar EUV: A multiscale comparison between sunspot number, 10.7 cm flux, LASP MgII index, and SOHO/SEM EUV flux, J. Atmos. Solar-Terr. Phys., 73, 1708- 1714, 2011.
    • Yue, X., Wan, W., Liu, L., Ning, B., and Zhao, B.: Applying artificial neural network to derive long-term foF2 trends in the Asia/Pacific sector ftom ionosonde observations, J. Geophys. Res., 111, A10303, doi:10.1029/2005JA011577, 2006.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article