LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
A. H. Depueva; V. H. Depuev; A. V. Mikhailov (2007)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Science, Physics, QC1-999, QC801-809
International audience; The observed NmF2 and NmE variations were analyzed for the periods of positive and negative quiet-time F2-layer disturbances (Q-disturbances) observed in the midlatitude daytime F2-layer to specify the mechanism of their origin. The noontime ?NmF2 and ?NmE deviations demonstrate a synchronous type of variation which can be explained by vertical gas motion in the thermosphere. This neutral gas motion should result in atomic abundance variations, the latter being confirmed by the Millstone Hill ISR observations for periods of positive and negative Q-disturbance events. The analysis of the ISR data has shown that atomic oxygen concentration variations are the main cause of the daytime F2-layer Q-disturbances. The auroral heating which controls the poleward thermospheric wind is considered to be the basic mechanism for the Q-disturbances, however, the specific mechanisms of positive and negative Q-disturbances are different. Some morphological features of the Q-disturbances revealed earlier are explained in the scope of the proposed concept.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Altadill, D. and Apostolov, E. M.: Vertical propagating signatures of wave-type oscillations (2-and 6.5-days) in the ionosphere obtained from electron-density profiles, J. Atmos. Solar-Terr. Phys., 63, 823-834, 2001.
    • Apostolov, E. M., Altadill, D., and Alberca, L.: Characteristics of quasi-2-day oscillations in the foF2 at northern middle latitudes, J. Geophys. Res., 100, 12 163-12 171, 1995.
    • Belehaki, A. and Tsagouri, I.: On the occurrence of storminduced nighttime ionization enhancements at ionospheric middle latitudes, J. Geophys. Res., 107(A8), 1209, doi:10.1029/2001JA005029, 2002.
    • Buonsanto, M. J.: Ionospheric storms - a review, Space Sci. Rev., 88, 563-601, 1999.
    • Buonsanto, M. J. and Witasse, O. G.: An updated climatology of thermospheric neutral winds and F region ion drifts above Millstone Hill, J. Geophys. Res., 104, 24 675-24 687, 1999.
    • Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation in a atmosphere on a rotating Earth, Proc. Roy. Soc., London, 43(1), 26-45 and 43(5), 483-501, 1931.
    • Chen, P.-R.: Two-day oscillation of the equatorial ionization anomaly, J. Geophys. Res., 97, 6343-6357, 1992.
    • Danilov, A. D.: Meteorological control of the D-region, Ionospheric Res., Moscow (in Russian), 39, 33-42, 1986.
    • Danilov, A. D.: Ion chemistry of the lower thermosphere, J. Atmos. Terr. Phys., 56, 1213-1225, 1994.
    • Danilov, A. D., Kazimirovsky, E. S., Vergasova, G. V., and Khachikjan, G. Ya.: The meteorological effects in the ionosphere, Hydrometeoizdat, Leningrad (in Russian), pp. 270, 1987.
    • Danilov, A. D. and Smirnova, N. V.: Specification of ion composition model in the International Reference Ionosphere IRI, Geomag. i Aeronom. (in Russian), 35, 80-88, 1995.
    • Fejer, B. G., Emmert, J. T., Shepherd, G. G., and Solheim, B. H.: Average daytime F region disturbance neutral winds measured by UARS: Initial results, Geophys. Res. Lett., 27, 1859-1862, 2000.
    • Forbes, J. M., Gonzalez, R., Marcos, F. A., Revelle, D., and Parish, H.: Magnetic storm response of lower thermosphere density, J. Geophys. Res., 101, 2313-2319, 1996.
    • Forbes, J. M. and Zhang, X.: Quasi 2-day oscillation of the ionosphere: a statistical study, J. Atmos. Solar-Terr. Phys., 59, 1025- 1034, 1997.
    • Forbes, J. M., Palo, S. E., and Zhang, X.: Variability of the ionosphere, J. Atmos. Solar-Terr. Phys., 62, 685-693, 2000.
    • Fuller-Rowell, T. J., Codrescu, M. V., Rishbeth, H., Moffett, R. J., and Quegan, S.: On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101, 2343-2353, 1996.
    • Goncharenko, L. P., Salah, J. E., van Eyken, A., Howells, V., Thayer, J. P., Taran, V. I., Shpynev, B., Zhou, Q., and Chau, J.: Observations of the April 2002 geomagnetic storm by the global network of incoherent scatter radars, Ann. Geophys., 23, 163- 181, 2005, http://www.ann-geophys.net/23/163/2005/.
    • Goncharenko, L., Salah, J., Crowley, G., Paxton, L.J., Zhang, Y., Coster, A., Rideout, W., Huang, C., Zhang, S., Reinisch, B., and Taran, V.: Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 ad their association with IMF By, J. Geophys. Res., 111, A03303, doi:10.1029/2004JA010683, 2006.
    • Huang, C.-S., Foster J. C., Goncharenko, L. P., Erickson, P. J., Rideout, W., and Coster, A. J.: A strong positive phase of ionospheric storms observed by the Millstone Hill incoherent scatter radar and global GPS network, J. Geophys. Res., 110, A06303, doi:10.1029/2004JA010865, 2005.
    • Ivanov-Kholodny, G. S., Letshenko, L. N., and Odintzova, I. N.: Relationship between X-ray and ultraviolet radiations of solar flares in the ionization of the ionosphere E-region, Geomag. i Aeronom. (in Russian), 16, 246-250, 1976.
    • Ivanov-Kholodny, G. S. and Mikhailov, A. V.: The prediction of ionospheric conditions, Reidel, Dordrecht, 1986.
    • Ivanov-Kholodny, G. S. and Nusinov, A. A.: The formation and dynamics of the daytime mid-latitude ionospheric E-layer, Trudi IAG (in Russian), 37, pp. 128, 1979.
    • Kazimirovsky, E. S. and Kokourov, V. D.: The tropospheric and stratospheric effects in the ionosphere, J. Geomag. Geoelectr., 43 (Suppl), 551-562, 1991.
    • Kazimirovsky, E. S., Herraiz, M., and De la Morena, B. A.: Effects on the ionosphere due to phenomena occurring below it, Survey in Geophysics, 24, 139-184, 2003.
    • Khachikjan, G. Ya.: Large scale meteorological disturbances and F2-layer In: The meteorological effects in the ionosphere, Hydrometeoizdat, Leningrad, 210-245, 1987 (in Russian).
    • Kutiev, I. and Muhtarov, P.: Modeling of midlatitude F region response to geomagnetic activity, J. Geophys. Res., 106, 15 501- 15 509, 2001.
    • Lasˇtovicˇka, J., Krizˇan, P., Sˇ auli, P., and Novotna´, D.: Persistence of the planetary wave type oscillations in foF2 over Europe, Ann. Geophys., 21, 1543-1552, 2003, http://www.ann-geophys.net/21/1543/2003/.
    • Lei, J., Liu, L., Wan, W., and Zhang, S.-R.: Modeling the behavior of ionosphere above Millstone Hill during the September 21-27, 1998 storm, J. Atmos. Solar-Terr. Phys., 66, 1093-1102, 2004.
    • Liu, H.-L. and Roble, R. G.: Dynamical processes elated to the atomic oxygen equinox transition, J. Atmos. Solar-Terr. Phys., 66, 769-779, 2004.
    • Mikhailov, A. V.: Possible mechanism for the in-phase changes in the electron densities in the ionospheric E and F2 regions, Geomagn. and Aeronom., 23, 455-458, 1983.
    • Mikhailov, A. V.: Aeronomic estimates of solar EUV fluxes using incoherent scatter observations, Phys. Chem. Earth (C), 25, 505- 509, 2000.
    • Mikhailov, A. V., Skoblin, M. G., and Fo¨rster, M.: Day-time F2- layer positive storm effect at middle and lower latitudes, Ann. Geophys., 13, 532-540, 1995, http://www.ann-geophys.net/13/532/1995/.
    • Mikhailov, A. V., Depueva, A. Kh., and Leschinskaya, T. Yu.: Morphology of quiet time F2-layer disturbances: High and lower latitudes, Int. J. Geomag. Aeronom., 1-14, GI1006, doi:10.1029/2003GI000058, 2004.
    • Mikhailov, A. V. and Lilensten, J.: A revised method to extract thermospheric parameters from incoherent scatter observations, Ann. Geophys., Supp., 47, 985-1008, 2004.
    • Mikhailov, A. V. and Schlegel, K.: Self-consistent modeling of the daytime electron density profile in the ionospheric F-region, Ann. Geophys., 15, 314-326, 1997, http://www.ann-geophys.net/15/314/1997/.
    • Mikhailov, A. V. and Schlegel, K.: Equinoctial transitions in the ionosphere and thermosphere, Ann. Geophys., 19, 783-796, 2001, http://www.ann-geophys.net/19/783/2001/.
    • Nusinov, A. A.: Deterministic model of mid-latitude and equatorial E-layer (Description and comparative characteristics of the accuracy), Ionosph. Res. (in Russian), 44, 94-97, 1988.
    • Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues, J. Geophys. Res., 107, 1468, doi:10.1029/2002JA009430, 2002.
    • Pro¨lss, G. W.: Ionospheric F-region storms, Handbook of Atmospheric Electrodynamics, Vol. 2, edited by: Volland, H., CRC Press/Boca Raton, pp. 195-248, 1995.
    • Rishbeth, H.: How the thermospheric circulation affects the ionospheric F2-layer, J. Atmos. Solar-Terr. Phys., 60, 1385-1402, 1998.
    • Rishbeth, H. and Mu¨ller-Wodarg, I. C. F.: Vertical circulation and thermospheric composition: a modelling study, Ann. Geophys., 17, 794-805, 1999, http://www.ann-geophys.net/17/794/1999/.
    • Rishbeth, H. and Mendillo, M.: Patterns of F2-layer variability, J. Atmos. Solar-Terr. Phys., 63, 1661-1680, 2001.
    • Roosen, J.: The seasonal variation of geomagnetic disturbance amplitudes, Bull. Astr. Inst. Neth. 18, 295-305, 1966.
    • Shepherd, G. G., Stegman, J., Espy, P., McLandress, C., Thuillier, G., and Wiens, R. H.: Springtime transition in lower thermospheric atomic oxygen, J. Geophys. Res., 104, 213-223, 1999.
    • Shepherd, M. G., Espy, P. J., She, C. Y., Hocking, W., Keckhut, P., Gavrilyeva, G., Shepherd, G. G., and Naujokat, B.: Springtime transition in the mesospheric temperature in the northern hemisphere, J. Atmos. Solar-Terr. Phys., 64, 1183-1199, 2002.
    • Shepherd, G. G., Stegman, J., Singer, W., and Roble, R.: Equinox transition in wind and airglow observations, J. Atmos. Solar-Terr. Phys., 66, 481-491, 2004.
    • Tsagouri, I., Belehaki, A., Moraitis, G., and Mavromichalaki, H.: Positive and negative ionospheric disturbances at middle latitude during geomagnetic storms, Geophys. Res. Lett., 27(21), 3579- 3582, 2000.
    • Vanina, L. B. and Danilov, A. D.: Relationship of the F2-region with the stratosphere parameters: only geomagnetically quiet days, Geomag i Aeronom. (in Russian), 45, 386-389, 2005.
    • Wang, D. Y., Ward, W. E., Solheim, B. H., and Shepherd, G. G.: Longitudinal variations of green line emission rates observed by WINDII at altitudes 90-120 km during 1991-1996, J. Atmos. Solar-Terr. Phys., 64, 1273-1286, 2002.
    • Ward, W. E., Solheim, B. H., and Shepher, G. G.: Two day wave induced variations in the oxygen green line volume emission rate: WINDII observations, Geophys. Res. Lett., 24, 1227-1130, 1997.
    • Zevakina, R. A. and Hill, H.: Variations of F-region at low latitudes during magnetospheric storms, in: The diagnostics and modeling of the ionospheric disturbances, Nauka, Moscow (in Russian), 168-175, 1978.
    • Zevakina, R. A. and Kiseleva, M. V.: F2-region parameter variations during positive disturbances related to phenomena in the magnetosphere and interplanetary medium, in: The diagnostics and modelling of the ionospheric disturbances, Nauka, Moscow (in Russian), 151-167, 1978.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.