LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hodzic , A.; Madronich , S.; Bohn , B.; Massie , S.; Menut , L.; Wiedinmyer , C. (2007)
Publisher: European Geosciences Union
Journal: Atmospheric Chemistry and Physics Discussions
Languages: English
Types: Article
Subjects: Chemistry, DOAJ:Earth and Environmental Sciences, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, QD1-999, G, Geography. Anthropology. Recreation, J, QC801-809, Geophysics. Cosmic physics, Physics, GE1-350, DOAJ:Environmental Sciences, Environmental sciences, QC1-999
ddc: ddc:550
The present study investigates effects of wildfire emissions on air quality in Europe during an intense fire season that occurred in summer 2003. A meso-scale chemistry transport model CHIMERE is used, together with ground based and satellite aerosol optical measurements, to assess the dispersion of fire emissions and to quantify the associated radiative effects. The model has been improved to take into account a MODIS-derived daily smoke emission inventory as well as the injection altitude of smoke particles. The simulated aerosol optical properties are put into a radiative transfer model to estimate (off-line) the effects of smoke particles on photolysis rates and atmospheric radiative forcing. We have found that the simulated wildfires generated comparable amounts of primary aerosol pollutants (130 kTons of PM<sub>2.5</sub>, fine particles) to anthropogenic sources during August 2003, and caused significant changes in aerosol optical properties not only close to the fire source regions, but also over a large part of Europe as a result of the long-range transport of the smoke. Including these emissions into the model significantly improved its performance in simulating observed aerosol concentrations and optical properties. Quantitative comparison with MODIS and POLDER data during the major fire event (3&ndash;8 August 2003) showed the ability of the model to reproduce high aerosol optical thickness (AOT) over Northern Europe caused by the advection of the smoke plume from the Portugal source region. Although there was a fairly good spatial agreement with satellite data (correlation coefficients ranging from 0.4 to 0.9), the temporal variability of AOT data at specific AERONET locations was not well captured by the model. Statistical analyses of model-simulated AOT data at AERONET ground stations showed a significant decrease in the model biases suggesting that wildfire emissions are responsible for a 30% enhancement in mean AOT values during the heat-wave episode. The implications for air quality over a large part of Europe are significant during this episode. First, directly, the modeled wildfire emissions caused an increase in average PM<sub>2.5</sub> ground concentrations from 20 to 200%. The largest enhancement in PM<sub>2.5</sub> concentrations stayed, however, confined within a 200 km area around the fire source locations and reached up to 40 μg/m³. Second, indirectly, the presence of elevated smoke layers over Europe significantly altered atmospheric radiative properties: the model results imply a 10 to 30% decrease in photolysis rates and an increase in atmospheric radiative forcing of 10&ndash;35 W m<sup>&minus;2</sup> during the period of strong fire influence throughout a large part of Europe. These results suggest that sporadic wildfire events may have significant effects on regional photochemistry and atmospheric stability, and need to be considered in current chemistry-transport models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 7, 4705-4760, 2007 7, 4705-4760, 2007 hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil, J. Geophys. Res., 103(D24), 32 107-32 118, 1998.
    • Fiebig, M., Stohl, A., Wendisch, M., Eckhardt, S., and Petzold, A.: Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture, Atmos. Chem. Phys., 3, 881-891, 2003, http://www.atmos-chem-phys.net/3/881/2003/.
    • Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P. S.: Global estimation of burned area using MODIS active fire observations, Atmos. Chem. Phys., 6, 957-974, 2006, http://www.atmos-chem-phys.net/6/957/2006/.
    • Ha¨ nel, G.: The properties of atmospheric aerosols as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 73-188, 1976.
    • Hansen, M., DeFries, R., Townshend, J. R., Carroll, M., Dimiceli, C., and Sohlberg, R.: 500 m MODIS Vegetation Continuous Fields. College Park, Maryland: The Global Land Cover Facility, 2003.
    • Hays, M. D., Geron, C. D., Linna, K. J., Smith, N. D., and Schauer, J. J.: Speciation of gasphase and fine particle emissions from burning of foliar fuels, Environ. Sci. Technol., 36(11), 2281-2295, 2002.
    • Heald, C. L., Jacob, D. J., Palmer, P. I., Evans, M. J., Sachse, G. W., Singh, H. B., and Blake, D. R.: Biomass burning emission inventory with daily resolution: Application to aircraft observations of Asian outflow, J. Geophys. Res., 108(D21), 8811, doi:10.1029/2002JD003082, 2003.
    • Hodzic, A., Chepfer, H., Vautard, R., Chazette, P., et al.: Comparison of aerosol chemistrytransport model simulations with lidar and Sun-photometer observations at a site near Paris, J. Geophys. Res., 109, D23201, doi:10.1029/2004JD004735, 2004.
    • Hodzic, A., Vautard, R., Bessagnet, B., Lattuati, M., and Moreto F.: Long-term urban aerosol simulation versus routine particulate matter observations, Atmos. Environ., 39, 5851- 5864, 2005.
    • Hodzic, A., Vautard, R., Chepfer, H., Goloub, P., et al.: Evolution of aerosol optical thickness over Europe during the August 2003 heat wave as seen from POLDER data and CHIMERE model simulations, Atmos. Chem. Phys., 6, 1853-1864, 2006a.
    • Hodzic, A., Bessagnet, B., and Vautard, R.: A model evaluation of coarse-mode nitrate heterogeneous formation on dust particles, Atmos. Environ., 40(22), 4158-4171, 2006b.
    • Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C., and Simon, M.: Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data, J. Geophys. Res., 109, D14S04, doi:10.1029/2003JD003666, 2004.
    • Ichoku, C., Remer, L. A., and Eck, T. F.: Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua, J. Geophys. Res., 110, D10S03, doi:10.1029/2004JD004987, 2005.
    • Intergovernmental Panel on Climate Change (IPCC), Climate Change 2001: The Scientific Basis, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., et al.: Cambridge Univ. Press, New York, 2001.
    • Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed, J. Geophys. Res., 103(D9), 10 593-10 604, 1998.
    • Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y.: The MODIS fire products, Remote Sens. Environ., 83, 244-262, 2002.
    • Kaufmann, Y. J., Tanre, D., Remer, L. A., Vermote, E. F., Chu, A., and Holben, B. N.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102(D14), 17 051-17 067, 1997.
    • Keil, A. and Haywood, J. M.: Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties, J. Geophys. Res., 108(D13), 8467, doi:10.1029/2002JD002315, 2003.
    • Li, G., Zhang, R., Fan, J., and Tie, X.: Impacts of black carbon aerosol on photolysis and ozone, J. Geophys. Res., 110, D23206, doi:10.1029/2005JD005898, 2005.
    • Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European Seasonal and Annual Temperature Variability, Trends, and Extremes since 1500, Science, 303(5663), 1499-1503, 2004.
    • Madronich, S.: Photodissociation in the atmosphere, 1, actinic flux and the effects of ground reflections and clouds, J. Geophys. Res., 92, 9740-9752, 1987.
    • Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols, J. Geophys. Res., 108(D3), 4097, doi:10.1029/2002JD002622, 2003.
    • Mattis I., Ansmann, A., Wandinger, U., and Mu¨ller, D.: Unexpectedly high aerosol load in the free troposphere over central Europe in spring/summer 2003, Geophys. Res. Lett., 30(22), 2178, doi:10.1029/2003GL018442, 2003.
    • McKeen, S. A., Wotawa, G., Parrish, D. D., et al.: Ozone production from Canadian wildfires during June and July of 1995, J. Geophys. Res., 107(D14), 4192, doi:10.1029/2001JD000697, 2002.
    • 5 Meehl, G. A. and Tebaldi, C.: More intense, more frequent, and longer lasting heat waves in the 21st century, Science, 305(5686), 994-997, 2004.
    • Meloni, D., Di Sarra, A., Pace, G., and Monteleone, F.: Aerosol optical properties at Lampedusa (Central Mediterranean). 2. Determination of single scattering albedo at two wavelengths of different aerosol types, Atmos. Chem. Phys., 6, 715-727, 2006, 10 http://www.atmos-chem-phys.net/6/715/2006/.
    • Myhre, G., Grini, A., Haywood, J. M., Stordal, F., Chatenet, B., Tanre´, D., Sundet, J. K., and Isaksen, I. S. A.: Modeling the radiative impact of mineral dust during the Saharan Dust Experiment (SHADE) campaign, J. Geophys. Res., 108(D18), 8579, doi:10.1029/2002JD002566, 2003.
    • 15 Mu¨ller D., Mattis, I., Wandinger, U., Ansmann, A., Althausen, D., and Stohl, A.: Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization, J. Geophys. Res., 110, D17201, doi:10.1029/2004JD005756, 2005.
    • Pace, G., Meloni, D., and di Sarra, A.: Forest fire aerosol over the Mediterranean basin during 20 summer 2003, J. Geophys. Res., 110, D21202, doi:10.1029/2005JD005986, 2005.
    • Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols over the United States and implications for natural visibility, J. Geophys. Res., 108(D12), 4355, doi:10.1029/2002JD003190, 2003.
    • Phuleria, H. C., Fine, P. M., Zhu, Y., and Sioutas, C.: Air quality impacts of the October 2003 25 Southern California wildfires, J. Geophys. Res., 110, D07S20, doi:10.1029/2004JD004626, 2005.
    • Pouliot G., Pierce T., and Vukovich J.: Wildland fire emission modeling for CMAQ: An update, 4th Annual CMAS Models-3 Users' Conference, September 26-28, 2005, Chapel Hill, North Carolina, 2005.
    • 30 Prins, E. M., Feltz, J. M., Menzel, W. P., and Ward, D. E.: An overview of GOES-8 diurnal fire and smoke results for SCAR-B and the 1995 fire season in South America, J. Geophys. Res.-Atmos., 103(D24), 31 821-31 836, 1998.
    • Raga, G. B., Castro, T., and Baumgardner, D.: The impact of megacity pollution on local climate and implications for the regional environment: Mexico City, Atmos. Environ. 35, 1805-1811, 2000.
    • Reid, J. S., Hobbs, P. V., Ferek, R. J., Blake, D. R., Martins, J. V., Dunlap, M. R., and Liousse, C.: Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil, 5 J. Geophys. Res., 103, 32 059-32 080, 1998.
    • Reid, J. S., Eck, T. F., Christopher, S. A., Hobbs, P. V., and Holben, B.: Use of the A˚ ngstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil, J. Geophys. Res., 104(D22), 27 473-27 490, 1999.
    • Remer, L., Kaufman, Y., Tanre´, D., Mattoo, S., Chu, D., Martins, J., Li, R., Ichoku, C., Levy, R., 10 Kleidman, R., Eck, T., Vermote, E., and Holben, B.: The MODIS aerosol algorithm, products and validation, J. Atmos. Sci., Special Section 62, 947-973, 2005.
    • Scha¨r, C., Vidale, P. L., Lu¨thi, D., Frei, C., Ha¨berli, C., and Liniger, M. A.: Appenzeller, C., The role of increasing temperature variability in European summer heatwaves, Nature, 427(6972), 332-336, 2004.
    • 15 Seigneur, C.: Air pollution : Current challenges and future opportunities. AIChe Journal, 51(2), 356-364, 2005.
    • Stamnes, K., Tsay, S., Wiscombe, W., and Jayaweera, K.: A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502-2509, 1988.
    • 20 Trentmann, J., Luderer, G., Winterrath, T., Fromm, M. D., Servranckx, R., Textor, C., Herzog, M., Graf, H. F., and Andreae, M. O.: Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part I): reference simulation, Atmos. Chem. Phys., 6, 5247-5260, 2006, http://www.atmos-chem-phys.net/6/5247/2006/.
    • 25 Vautard, R., Builtjes, P. H. J., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet, B., Honore, C., Moussiopoulos, N., Pirovano, G., Schaap, M., Stern, R., Tarrason, L., Wind, P., Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project, Atmos. Environ., 41(1), 173-188, 2007.
    • 30 Yu, H., Liu, S. C., and Dickinson, R. E.: Radiative effects of aerosols on the evolution of the atmospheric boundary layer, J. Geophys. Res., 107(D12), 4142, doi:10.1029/2001JD000754, 2002.
    • Wang J., Christopher, S. A., Nair, U. S., Reid, J. S., Prins, E. M., Szykman, J., and Hand, J. L.: Mesoscale modeling of Central American smoke transport to the United States: 1. “Topdown” assessment of emission strength and diurnal variation impacts, J. Geophys. Res., 111, D05S17, doi:10.1029/2005JD006416, 2006.
    • Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X. Y., O'Neill, S., and Wynne, K. K.: Estimating emissions from fires in North America for air quality modeling, Atmos. Environ., 40(19), 3419-3432, 2006.
    • Wotawa, G. and Trainer, M.: The influence of Canadian forest fires on pollutant concentrations in the United States, Science, 288, 324-328, 2000.
    • WRAP, Western Regional Air Partnership, 2005. Development of 2000-04 Baseline Period and 2018 Projection Year Emission Inventories. Prepared by Air Sciences, Inc. Project No. 178-8, August, 2005.
    • Fire aerosol radiative forcing at El_Arenosil o station (6.41E,50.91N) Fire aerosol radiative forcing at Evora station (−7.9E,38.6 N) 210 225 240 255 Fire aerosol radiative forcing at Avignon station (4.9E,43.9 N) 195 210 225 240 255 Fire aerosol radiative forcing at Lampedusa station (12.6E,35.5 N) 210 225 240 255 Fire aerosol radiative forcing at Toulon station (6.0E,43.1 N) 210 225 240 255 Fire aerosol radiative forcing at Lil e station (3.1E,50.6 N)
  • No related research data.
  • No similar publications.