LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
D. Frühauff; K.-H. Glassmeier (2016)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
This study presents an investigation on the occurrence of fast flows in the magnetotail using the complete available data set of the THEMIS spacecraft for the years 2007 to 2015. The fast flow events (times of enhanced ion velocity) are detected through the use of a velocity criterion, therefore making the resulting database as large as almost 16 000 events. First, basic statistical findings concerning velocity distributions, occurrence rates, group structures are presented. Second, Superposed Epoch Analysis is utilized to account for average profiles of selected plasma quantities. The data reveal representative time series in near and far tail of the Earth with typical timescales of the order of 1–2 min, corresponding to scale sizes of 3 RE. Last, related magnetic field disturbances are analyzed. It is found that the minimum variance direction is essentially confined to a plane almost perpendicular to the main flow direction while, at the same time, the maximum variance direction is aligned with flow and background field directions. The presentation of the database and first statistical findings will prove useful both as input for magneto-hydrodynamical simulations and theoretical considerations of fast flows.

Share - Bookmark

Cite this article