LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
K. Omidvar; W. D. Pesnell (1995)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
The high-speed correction factor to the O+-O collision frequency, resulting from drift velocities between ions and neutrals, is calculated by solving the integral expression in this factor both numerically and analytically. Although the analytic solution is valid for either small or large drift velocities between ions and neutrals, for temperatures of interest and all drift velocities considered, agreement is found between analytic and detailed numerical integration results within less than 1% error. Let Tr designate the average of the ion and neutral temperatures in K, and u=vd/α, where vd is the relative drift velocity in cm s-1, and α=4.56×103Tr cm s-1 is the thermal velocity of the O+-O system. Then, as u ranges from 0 to 2, the correction factor multiplying the collision frequency increases monotonically from 1 to about 1.5. An interesting result emerging from this calculation is that the correction factor for temperatures of aeronomical interest is to a good approximation independent of the temperature, depending only on the scaled velocity u.

Share - Bookmark

Cite this article