LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
S. Roşca; Ş. Bilaşco; D. Petrea; I. Fodorean; I. Vescan; S. Filip; F.–L. Măguţ (2015)
Publisher: Copernicus Publications
Journal: Natural Hazards and Earth System Sciences Discussions
Languages: English
Types: Article
Subjects: QE1-996.5, Geology
The existence of a large number of GIS models for the identification of landslide occurrence probability makes difficult the selection of a specific one. The present study focuses on the application of two quantitative models: the logistic and the BSA models. The comparative analysis of the results aims at identifying the most suitable model. The territory corresponding to the Niraj Mic Basin (87 km2) is an area characterised by a wide variety of the landforms with their morphometric, morphographical and geological characteristics as well as by a high complexity of the land use types where active landslides exist. This is the reason why it represents the test area for applying the two models and for the comparison of the results. The large complexity of input variables is illustrated by 16 factors which were represented as 72 dummy variables, analysed on the basis of their importance within the model structures. The testing of the statistical significance corresponding to each variable reduced the number of dummy variables to 12 which were considered significant for the test area within the logistic model, whereas for the BSA model all the variables were employed. The predictability degree of the models was tested through the identification of the area under the ROC curve which indicated a good accuracy (AUROC = 0.86 for the testing area) and predictability of the logistic model (AUROC = 0.63 for the validation area).

Share - Bookmark

Cite this article