Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Inness , A.; Baier , F.; Benedetti , A.; Bouarar , Idir; Chabrillat , S.; Clark , H.; Clerbaux , Cathy; Coheur , P.; Engelen , R. J.; Errera , Q.; Flemming , J.; George , Maya; Granier , Claire; Hadji-Lazaro , Juliette; Huijnen , V.; Hurtmans , D.; Jones , L.; Kaiser , J. W.; Kapsomenakis , J.; Lefever , K.; Leitão , J.; Razinger , M.; Richter , A.; Schultz , M. G.; Simmons , A. J.; Suttie , M.; Stein , O.; Thépaut , J.-N.; Thouret , V.; Vrekoussis , M. ... view all 31 authors View less authors (2013)
Publisher: European Geosciences Union
Languages: English
Types: Article
Subjects: [ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph], Chemistry, DOAJ:Earth and Environmental Sciences, QD1-999, G, Geography. Anthropology. Recreation, Deutsches Fernerkundungsdatenzentrum, QC801-809, Geophysics. Cosmic physics, Physics, GE1-350, DOAJ:Environmental Sciences, Environmental sciences, QC1-999
ddc: ddc:550
An eight-year long reanalysis of atmospheric composition data covering the period 2003–2010 was constructed as part of the FP7 funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system. This reanalysis provides fields of chemically reactive gases, namely carbon monoxide, ozone, nitrogen oxides, and formaldehyde, as well as aerosols and greenhouse gases globally at a resolution of about 80 km for both the troposphere and the stratosphere. This paper describes the assimilation system for the reactive gases and presents validation results for the reactive gases analysis fields to document the dataset and to give a first indication of its quality. <br><br> Tropospheric CO values from the MACC reanalysis are on average 10–20% lower than routine observations from commercial aircrafts over airports through most of the troposphere, and have larger negative biases in the boundary layer at urban sites affected by air pollution, possibly due to an underestimation of CO or precursor emissions. <br><br> Stratospheric ozone fields from the MACC reanalysis agree with ozone sondes and ACE-FTS data to within ±10% in most situations. In the troposphere the reanalysis shows biases of −5% to +10% with respect to ozone sondes and aircraft data in the extratropics, but has larger negative biases in the tropics. Area averaged total column ozone agrees with ozone fields from a multi sensor reanalysis data set to within a few percent. <br><br> NO<sub>2</sub> fields from the reanalysis show the right seasonality over polluted urban areas of the NH and over tropical biomass burning areas, but underestimate wintertime NO<sub>2</sub> maxima over anthropogenic pollution regions and overestimate NO<sub>2</sub> in Northern and Southern Africa during the tropical biomass burning seasons. <br><br> Tropospheric HCHO is well simulated in the MACC reanalysis even though no satellite data are assimilated. It shows good agreement with independent SCIAMACHY retrievals over regions dominated by biogenic emissions with some anthropogenic input, such as the Eastern US and China, and also over African regions influenced by biogenic sources and biomass burning.

Share - Bookmark

Funded by projects

  • EC | MACC

Cite this article