LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Juras, Roman; Würzer, Sebastian; Pavlásek, Jirka; Vitvar, Tomáš; Jonas, Tobias (2016)
Languages: English
Types: Article
Subjects:
The mechanisms of rainwater propagation and runoff generation during rain-on-snow (ROS) are still insufficiently known. Understanding the behaviour of liquid water within the natural snowpack is crucial especially for forecasting of natural hazards such as floods and wet snow avalanches. In this study, rainwater percolation through snow was investigated by sprinkling deuterium enriched water on snow and applying an advanced hydrograph separation technique on samples collected from the snowpack runoff. This allowed quantifying the contribution of rainwater and snowmelt in the water released from the snowpack. Four field experiments were carried out during the winter 2015 in the vicinity of Davos, Switzerland. For this purpose, large blocks of natural snow were isolated from the surrounding snowpack to inhibit lateral exchange of water. These blocks were exposed to artificial rainfall with 41 mm of deuterium enriched water. The sprinkling was run in four 30 minutes periods separated by three 30 minutes non-sprinkling periods. The runoff from the snow block was continuously gauged and sampled for the deuterium concentration. At the onset of each experiment initially present liquid water content was first pushed out by the sprinkling water. Hydrographs showed four pronounced peaks corresponding to the four sprinkling bursts. The contribution of rainwater to snowpack runoff consistently increased over the course of the experiment but never exceeded 86 %. An experiment conducted on a cold snowpack suggested the development of preferential flow paths that allowed rainwater to efficiently propagate through the snowpack limiting the time for mass exchange processes to take effect. On the contrary, experiments conducted on ripe isothermal snowpack showed a slower response behaviour and resulted in a total runoff volume which consisted of less than 50 % of the rain input.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from