Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nissen, K. M.; Matthes, K.; Langematz, U.; Mayer, B. (2007)
Publisher: European Geosciences Union
Journal: Atmospheric Chemistry and Physics
Languages: English
Types: Article
Subjects: Chemistry, DOAJ:Earth and Environmental Sciences, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, QD1-999, G, Geography. Anthropology. Recreation, QC801-809, Geophysics. Cosmic physics, GE1-350, DOAJ:Environmental Sciences, Physics, Environmental sciences, QC1-999, Fernerkundung der Atmosphäre
We introduce the improved Freie Universität Berlin (FUB) high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB). Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction) of the solar SW heating rate signal by about 20%. <br><br> The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal. <br><br> Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60&ndash;70 km) indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account. <br><br> The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ackerman, M.: UV-solar radiation related to mesospheric processes, in: Mesospheric models and related experiments, edited by: Fiocco, G., D., Reidel Publishing Company, Dordrecht, 149-159, 1971.
    • 20 Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0-120 km), AFGL-TR-86-0110, AFGL (OPI), Hanscom AFB, MA 01736, 1986.
    • Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric 25 chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and Ox species, Atmos. Chem.
    • Phys., 4, 1461-1738, 2004, http://www.atmos-chem-phys.net/4/1461/2004/.
    • Brasseur, G.: The response of the middle atmosphere to long-term and short-term solar variability: A two-dimensional model, J. Geophys. Res., 98, 23 079-23 090, 1993.
    • 7, 45-64, 2007 Chabrillat, S. and Kockarts, G.: Simple parameterization of the absorption of the solar Lymanalpha line, Geophys. Res. Lett., 24, 2659-2662, 1997.
    • Crooks, S. A. and Gray, L. J.: Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset, Climate, J., 18, 996-1015, 2005.
    • 5 Fleming, E. L., Chandra, S., Jackmann, C. H., Considine, D. B., and Douglas, A. R.: The middle atmosphere response to short and long term solar UV variations: Analysis of observations and 2D model results, J. Atmos. Terr. Phys., 57, 333-365, 1995.
    • Fortuin J. P. and Langematz, U.: An update on the global ozone climatology and on concurrent ozone and temperature trends, Proceedings of the International Society for Optical Engi10 neering (SPIE): Atmospheric Sensing and Modelling, 2311, 207-216, 1994.
    • Fouquart, Y., and Bonnel, B.: Computations of solar heating of the earth's atmosphere: A new parameterization, Beitr. Phys. Atmos., 53, 35-62, 1980.
    • Fro¨hlich, C.: Observations of irradiance measurements, Space Sci. Rev., 94, 15-24, 2000.
    • Gray, L. J., Crooks, S., Pascoe, C., Sparrow, S., and Palmer, M.: Solar and QBO Influences on 15 the Timing of Stratospheric Sudden Warmings, J. Atmos. Sci., 61, 2777-2796, 2004.
    • Haigh, J. D.: The role of stratospheric ozone in modulating the solar radiative effect on climate, Nature, 370, 544-546, 1994.
    • Haigh, J. D., Blackburn, M., and Day, R.: The Response of Tropospheric Circulation to Perturbations in Lower-Stratospheric Temperature, J. Climate, 18, 3672-3685, 2005.
    • 20 Jo¨ckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.: Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling, Atmos. Chem. Phys., 5, 433-444, 2005, http://www.atmos-chem-phys.net/5/433/2005/.
    • Kodera, K.: Solar cycle modulation of the north Atlantic oscillation: Implication in the spatial 25 structure of the NAO, Geophys. Res. Lett., 29, 1218, doi:10.1029/2001GL14557, 2002.
    • Kodera, K.: Solar influence on the Indian Ocean Monsson through dynamical processes, Geophys. Res. Lett., 31, L24209, doi:10.1029/2004GL020928, 2004.
    • Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J. Geophys. Res., 107, 4749, doi:10.1029/2002JD002224, 2002.
    • 30 Larkin, A., Haigh, J. D., and Djavidnia, S.: The effect of solar UV irradiance variations on the Earth's atmosphere, Space Sci. Rev., 94, 199-214, 2000.
    • Lett., 27, 2425-2428, doi:10.1029/2000GL000043, 2000.
    • 7, 45-64, 2007 Lean, J., Rottman, G., Kyle, H., Woods, T., Hickey, J., and Puga, L.: Detection and parameterisation of variations in solar mid- and near-ultraviolet radiation (200-400 nm), J. Geophys.
    • Res., 102, 29 939-29 956, 1997.
    • Lewis, B. R., Vardavas, I. M., and Carver, J. H.: The aeronomic dissociation of water vapor by 5 solar H Lyman α radiation, J. Geophys. Res., 88, 4935-4940, 1983.
    • Meteorol. Geophys., 54, 71-90, 2003.
    • Matthes, K., Langematz, U., Gray, L. J., Kodera, K., and Labitzke, K.: Improved 11-year solar 10 signal in the FUB-CMAM, J. Geophys. Res., 109, doi:10.1029/2003JD004012, 2004.
    • Matthes, K., Kuroda, Y., Kodera, K., and Langematz, U.: Transfer of the Solar Signal from the Stratosphere to the Troposphere: Northern Winter, J. Geophys. Res., 111, D06108, doi:10.1029/2005JD006283, 2006.
    • Mayer, B. and Kylling, A.: Technical Note: The libRadtran software package for radiative transfer 15 calculations: Description and examples of use, Atmos. Chem. Phys., 5, 1855-1877, 2005, http://www.atmos-chem-phys.net/5/1855/2005/.
    • Minschwaner, K., Anderson, G. P., Hall, L. A., and Yoshino, K.: Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5 cm−1 resolution, J. Geophys. Res., 97, 10 103-10 108, 1992.
    • 20 Mlynczak, M. G. and Solomon, S.: A detailed evaluation of the heating efficiency in the middle atmosphere, J. Geophys. Res., 98, 10 517-10 541, 1993.
    • Molina, L. T. and Molina, M. J.: Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength region, J. Geophys. Res., 91, 14 501-14 508, 1986.
    • Ogawa, S. and Ogawa, M.: Absorption cross sections of O2(a1Δg) and O2(X 3Σg−) in the region 25 from 1087 to 1700 A˚, Can J. Phys., 53, 1845-1852, 1975.
    • Roeckner, E., Ba¨uml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M. A., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM 5. PART I: Model description, MPIReport 349, 127 pp, 2003.
    • 30 Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., Moortgat, G.
    • K., Ravishankara, A. R., Kolb, C. E., Molina, M. J., and Finlayson-Pitts, B. J.: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.
    • 7, 45-64, 2007 Shibata, K. and Kodera, K.: Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle, J. Atmos. Sol.-Terr. Phys., 67, 125-143, 2005.
    • Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502-2509, 1988.
    • Strobel, D. F.: Parameterization of the atmospheric heating rate from 15 to 120 km due to O2 and O3 absorption of solar radiation, J. Geophys. Res., 83, 6225-6230, 1978.
    • Woods, T. and Rottman, G.: Solar ultraviolet variability over time periods of aeronomic interest, in Comparative Aeronomy in the Solar System, edited by M. Mendillo, A. Nagy, and J. Hunter Waite, Jr., Geophys. Monograph Series, Wash. DC, pp. 221-234, 2002.
    • World Meteorological Organization: Atmospheric ozone 1985, Global Ozone Res. Monit. Proj.
    • Rep. 16/1, Geneva, 1986.
    • Yoshino, K., Parkinson, W. H., Ito, K., and Matsui, T.: Absolute absorption cross-section measurements of Schumann-Runge continuum of O2 at 90 and 295 K, J. Mol. Spectrosc., 229, 238-243, 2005.
    • Yoshino, K., Cheung, A. S.-C., Esmond, J. R., Parkinson, W. H., Freeman, D. E.,Guberman, S. L., Jenouvrier, A., Coquart, B., and Merienne, M. F.: Improved absorption cross-sections of oxygen in the wavelength region 205-240 nm of the Herzberg continuum, Planet. Space Sci., 36, 1469-1475, 1988.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.