Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nesse, H.; Heinrich, D.; Williams, B.; Hoppe, U.-P.; Stadsnes, J.; Rietveld, M.; Singer, W.; Blum, U.; Sandanger, M. I.; Trondsen, E. (2008)
Publisher: European Geosciences Union (EGU)
Languages: English
Types: Article
Subjects: ionosphere-atmosphere interactions, VDP::Mathematics and natural science: 400::Physics: 430::Space and plasma physics: 437, VDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Rom- og plasmafysikk: 437, ionospheric irregularities, atmospheric composition and structure, thermosphere-composition and chemistry, ionosphere, QC801-809, ionospheric irregularity, Geophysics. Cosmic physics, Q, ion chemistry of the atmosphere, Science, Physics, QC1-999
Several possible mechanisms for the production of sporadic sodium layers have been discussed in the literature, but none of them seem to explain all the accumulated observations. The hypotheses range from direct meteoric input, to energetic electron bombardment on meteoric smoke particles, to ion neutralization, to temperature dependent chemistry. The varied instrumentation located on Andøya and near Tromsø in Norway gives us an opportunity to test the different theories applied to high latitude sporadic sodium layers. We use the ALOMAR Weber sodium lidar to monitor the appearance and characteristics of a sporadic sodium layer that was observed on 5 November 2005. We also monitor the temperature to test the hypotheses regarding a temperature dependent mechanism. The EISCAT Tromsø Dynasonde, the ALOMAR/UiO All-sky camera and the SKiYMET meteor radar on Andøya are used to test the suggested relationships of sporadic sodium layers and sporadic E-layers, electron precipitation, and meteor deposition during this event. We find that more than one candidate is eligible to explain our observation of the sporadic sodium layer.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arnold, K. S. and She, C.-Y.: Metal fluorescence lidar (light detection and ranging) and the middle atmosphere, Contemporary Phys., 44, 35-49, 2003.
    • Batista, P. P., Clemesha, B. R., and Simonich, D. M.: Horizontal structures in sporadic sodium layers at 23◦ S, Geophys. Res. Lett, 18, 1027-1030, 1991.
    • Batista, P. P., Clemesha, B. R., Batista, I. S., and Simonich, D. M.: Characteristics of the sporadic sodium layers at 23◦ S, J. Geophys. Res., 94, 15 349-15 358, 1989.
    • Clemesha, B. R., Kirchhoff, V. W. J. H., Simonich, D. M., and Takahashi, H.: Evidence of an extraterristrial source for the mesospheric sodium layer, Geophys. Res. Lett., 5, 873-876, 1978.
    • Clemesha, B. R., Batista, P. P., and Simonich, D. M.: Concerning the origin of enhanced sodium layers, Geophys. Res. Lett., 16, 1267-1270, 1988.
    • Clemesha, B. R.: Sporadic neutral metal layers in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys, 57, 725-736, 1995.
    • Collins, R. L., Hallinan, T. J., Smith, R. W., and Hernandez, G.: Lidar observations of large high-altitude sporadic Na layer during active aurora, Geophys. Res. Lett., 23, 3655-3658, 1996.
    • Cox, R. M. and Plane, J. M. C.: An ion-molecule mechanism for the formation of neutral sporadic Na layers, J. Geophys. Res., 103, 6349-6359, 1998.
    • Fricke, K. H. and von Zahn, U.: Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar, J. Atmos. Terr. Phys., 47, 499-512, 1985.
    • Gardner, C. S., Tao, X., and Papen, G. C.: Observations of strong wind shears and temperature enhancements during several sporadic Na layer events above Haleakala, Geophys. Res. Lett., 22, 2809-2812, 1995.
    • Gu, Y. Y., Qian, J., Papen G. C., Swenson, G. R., and Espy, P. J.: Concurrent observations of auroral activity and a large sporadic sodium layer event during ANLC-93, Geophys. Res. Lett., 22, 2805-2808, 1995.
    • Hansen G. and von Zahn, U.: Sudden sodium layers in polar latitudes, J. Atmos. Terr. Phys., 52, 585-608, 1990.
    • Hansen, G.: Plo¨tzliche Natriumschichten in polaren Breiten in Ho¨henbereich 90-110 km, Ph.D. thesis, Physikalisches Institut, Universita¨t Bonn, 1989.
    • Heinrich, D., Blum, U., Williams, B., Vance, J., She, C.-Y., Singer, W., and Hoppe, U.-P: Observations of wintertime mesopause temperatures with the ALOMAR Weber Na lidar during winter 2004/05, ESA SP-590, 133-137, 2005.
    • Heinrich, D., Nesse, H., Blum, U., Accot, P., Williams, B., and Hoppe, U.-P.: Summer sudden Na number density enhancements measured with the ALOMAR Weber Na lidar, Ann. Geophys., 26, 1057-1069, 2008.
    • Heinselman, C. J., Thayer, J. P., and Watkins, B. J.: A high-latitude observation of sporadic E-layer formation, Geophys. Res. Lett., 25, 3059-3062, 1998.
    • Hocking, W. K. and Thayaparan, T.: Simultaneous and collocated observations of winds and tides by MF and meteor radars over London, Canada (43◦ N, 81◦ W), during 1994-1996, Radio Sci., 32(2), 833-865, 1997.
    • Hooke, W. H.: Electron, ion and neutral-gas temperatures in temperate latitude sporadic-E layers, Planet. Space Sci., 17, 737- 748, 1969.
    • Hunten, D. M., Turco, R. P., and Toon, O. B.: Smoke and dust particles of meteoric origin in the mesosphere and stratosphere, J. Atmos. Sci., 37, 1342-1357, 1980.
    • Kirkwood, S. and von Zahn, U.: On the role of auroral electric fields in the formation of low altitude sporadic-E and sudden sodium layers, J. Atmos. Terr. Phys, 53, 389-407, 1991.
    • Mathews, J. D.: Sporadic E: current views and recent progress, J. Atmos. Sol.-Terr. Phys., 60, 413-435, 1998.
    • Mathews, J. D.: Some aspect of metallic ion chemistry and dynamics in the mesosphere and thermosphere, MAP Handbook, 25, 228-254, 1987.
    • Nygren, T., Jalonen, L., Oskman, J., and Turunen, T.: The role of electric field and neutral wind direction in the formation of sporadic E layers, J. Atmos. Terr. Phys., 46, 373-381, 1984.
    • Pitteway, M. L. V. and Wright, J. W.: Toward an optimum receiving array and pulse-set for the dynasonde, Radio Sci., 27, 481-490, 1992.
    • Plane, J. M. C.: Atmospheric chemistry of meteoric metals, Chem. Rev., 103, 4963-4984, 2003.
    • Plane, J. M. C. and Rajasekhar, B.: Kinetic study of the reactions Na+O2+N2 and Na+N2 over an extended temperature range, J. Phys. Chem., 93, 3135-3140, 1989.
    • Rees, M. H. and Luckey, D.: Auroral electron energy derived from ratio of spectroscopic emissions 1. Model computations, J. Geophys. Res., 79, 5181-5186, 1974.
    • She, C. Y., Vance, J. D., Williams, B. P., Krueger, D. A., Moosmu¨ller, H., Gibson-Wilde, D., and Fritts, D. C.: Lidar studies of atmospheric dynamics near polar mesopause, EOS Trans. AGU, 83, 289-293, 2002.
    • Singer, W., von Zahn, U., and Weiss, J.: Diurnal and annual variations of meteor rates at the arctic circle, Atmos. Chem. Phys., 4, 1355-1363, 2004, http://www.atmos-chem-phys.net/4/1355/2004/.
    • Singer, W., von Zahn, U., Batista, P. P., Fuller, B., and Latteck, R.: Diurnal and annual variations of meteor rates at latitudes between 69◦ N and 35◦ S, ESA SP-590, 151-156, 2005.
    • Vance, J. D., She, C.-Y., and Moosmu¨ller, H.: Continuouswave, all-solid-state, single-frequency 400-mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator, Appl. Opt., 37, 4891-4896, 1998.
    • von Zahn, U., von der Gathen, P., and Hansen G.: Forced release of sodium from upper atmospheric dust particles, Geophys. Res. Lett., 14, 76-79, 1987.
    • von Zahn, U. and Hansen, T. L.: Sudden neutral sodium layers: a strong link to sporadic E-layers, J. Atmos. Terr. Phys., 50, 93- 104, 1988.
    • Williams, B. P., Fritts, D. C., Wang, L., She, C. Y., Vance, J. D., Schmidlin, F. J., Goldberg, R. A., Mu¨llemann, A., and Lu¨bken, F.-J.: Gravity waves in the arctic mesosphere during the MaCWAVE/MIDAS summer rocket program, Geophys. Res. Lett., 31, L24S05, doi:10.1029/2004GL020049, 2004.
    • Williams, B. P., Croskey, C. L., She, C. Y., Mitchell, J. D., and Goldberg, R. A.: Sporadic sodium and sporadic-E layers observed during the summer 2002 MaCWAVE/MIDAS rocket campaign, Ann. Geophys., 24, 1257-1266, 2006, http://www.ann-geophys.net/24/1257/2006/.
    • Zhou, Q., Mathews, J. D., and Tepley, C. A.: A proposed temperature dependent mechanism for the formation of sporadic sodium layers, J. Atmos. Terr. Phys., 55, 513-521, 1993.
    • Zhou, Q. and Mathews, J. D.: Generation of sporadic sodium layers via turbulent heating of the atmosphere?, J. Atmos. Terr. Phys., 57, 1309-1319, 1995.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: A C...
  • NSF | Collaborative Research: CED...

Cite this article