LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McClure, James E.; Dye, Amanda L.; Miller, Cass T.; Gray, William G. (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: T, G, GE1-350, Geography. Anthropology. Recreation, Environmental technology. Sanitary engineering, Environmental sciences, Technology, TD1-1066

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Albers, B.: Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: a review, Acta Mechanica, 225, 2163-2189, 2014.
    • Alizadeh, A. H. and Piri, M.: The effect of saturation history on three-phase relative permeability: An experimental study, Water Resour. Res., 50, 1636-1664, 2014.
    • Anderson, T. B. and Jackson, R.: A fluid mechanical description of fluidized beds, Indust. Eng. Chem. Fundament., 6, 527-539, 1967.
    • Bachmat, Y. and Bear, J.: The General Equations of Hydrodynamic Dispersion in Homogeneous, Isotropic, Porous Mediums, J. Geophys. Res., 69, 2561-2567, 1964.
    • Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47-55, 2015.
    • Bear, J.: Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
    • Bernard, P. S. and Wallace, J. M.: Turbulent Flow, John Wiley & Sons, Hoboken, New Jersey, USA, 2002.
    • Blöschl, G.: Scaling in Hydrology, Hydrol. Process., 15, 709-711, 2001.
    • Blöschl, G., Grayson, R. B., and Sivapalan, M.: On the representative elementary area (rea) concept and its utility for distributed rainfall-runoff modelling, Hydrol. Process., 9, 313-330, 1995.
    • Bradshaw, P.: An Introduction to Turbulence and its Measurement, Pergamon Press, Elmsford, New York, USA, 1971.
    • Chanson, H.: Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results, Eur. J. Mech. B Fluids, 28, 191-210, 2009.
    • Collins, R., Triplett, C., Barjatya, A., Lehmacher, G., and Fritts, D.: Using lidar and rockets to explore turbulence in the atmosphere, SPIE Newsroom, doi:10.1117/2.1201505.005922, 2015.
    • Cushman, J. H.: The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1997.
    • D'Asaro, E. A.: Turbulence in the Upper-Ocean Mixed Layer, Ann. Rev. Mar. Sci., 6, 101-115, 2014.
    • Deems, J. S., Painter, T. H., and Finnegan, D. C.: Lidar measurement of snow depth: a review, J. Glaciol., 59, 467-479, 2013.
    • Dietrich, J. C., Dawson, C. N., Proft, J. M., Howard, M. T., Wells, G., Fleming, J. G., Luettich Jr., R. A., Westerink, J. J., Cobell, Z., Vitse, M., Lander, H., Blanton, B. O., Szpilka, C. M., and Atkinson, J. H.: Real-time forecasting and visualization of hurricane waves and storm surges using SWANCADCIRC and FigureGen, in: Computational Challenges in the Geosciences, vol. 156 of The IMA Volumes in Mathematics and Its Applications, edited by: Dawson, C. and Gerritsen, M., Springer Science & Business Media, New York, 2013.
    • Dudhia, J.: A history of mesoscale model development, Asia-Pacific J. Atmos. Sci., 50, 121-131, 2014.
    • Dye, A. L., McClure, J. E., Gray, W. G., and Miller, C. T.: Multiscale modeling of porous medium systems, in: chap. 1, 3rd Edn., Handbook of Porous Media, edited by: Vafai, K., CRC Press, Boca Raton, Florida, USA, 3-45, 2015.
    • Essex, C., McKitrick, R., and Andresen, B.: Does a Global Temperature Exist?, J. Non-Equilib. Thermodyn., 32, 1-27, 2007.
    • Flint, L. E., Flint, A. L., Thorne, J. H., and Boynton, R.: Finescale hydrologic modeling for regional landscape application: the California Basin characterization model development and performance, Ecol. Process., 2, doi:10.1186/2192-1709-2-25, 2013.
    • Fuentes, F. C., Iungo, G. V., and Porté-Agel, F.: 3D turbulence measurements using three synchronous wind lidars: Validation against sonic anemometry, J. Atmos. Ocean. Tech., 31, 1549- 1556, 2014.
    • Gentine, P., Troy, T. J., Lintner, B. R., and Findell, K. L.: Scaling in Surface Hydrology: Progress and Challenges, J. Contemp. Water Res. Educ., 147, 28-40, 2012.
    • Gleeson, T. and Paszkowski, D.: Perceptions of scale in hydrology: What do you mean by regional scale?, Hydrolog. Sci. J., 59, 99- 107, doi:10.1080/02626667.2013.797581, 2014.
    • Gray, W. G. and Miller, C. T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 7. Single-phase megascale flow models, Adv. Water Resour., 32, 1121-1142, doi:10.1016/j.advwatres.2009.05.010, 2009.
    • Gray, W. G. and Miller, C. T.: A generalization of averaging theorems for porous medium analysis, Adv. Water Resour., 62, 227- 237, doi:10.1016/j.advwatres.2013.06.006, 2013.
    • Gray, W. G. and Miller, C. T.: Introduction to the Thermodynamically Constrained Averaging Theory for Porous Media Systems, Springer-Verlag, New York, USA, 2014.
    • Gray, W. G. and O'Neill, K.: On the development of Darcy's law for the general equations for flow in porous media, Water Resour. Res., 12, 148-154, 1976.
    • Gray, W. G., Dye, A. L., McClure, J. E., Pyrak-Nolte, L. J., and Miller, C. T.: On the dynamics and kinematics of two-fluid-phase flow in porous media, Water Resour. Res., 51, 5365-5381, 2015.
    • Hermann, S. M. and Sop, T. K.: The map is not the territory: How satellite remote sensing and ground evidence have re-shaped the image of Sahelian desertification, in: The End of Desertification? Disputing Enviornmental Change in the Drylands, Springer Earth System Sciences, edited by: Behnke, R. and Mortimore, M., Springer, New York, USA, 117-145, 2016.
    • Hornung, U.: Homogenization and Porous Media, in: no. 6 in Interdisciplinary Applied Mathematics, Springer, New York, USA, 1997.
    • Ishii, M., Kim, S., and Kelly, J.: Development of Interfacial Area Transport Equation, Nucl. Eng. Technol., 37, 525-536, 2005.
    • Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., and Westerberg, I. K.: Disinformative data in large-scale hydrological modelling, Hydrol. Earth Syst. Sci., 17, 2845-2857, doi:10.5194/hess-17- 2845-2013, 2013.
    • Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., and Thielen, J.: Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level, Environ. Model. Softw., 75, 68-76, 2016.
    • Knödel, K., Lange, G., and Voigt, H.-J.: Environmental Geology: Handbook of Field Methods and Case Studies, Springer, Berlin, Heidelberg, New York, 2007.
    • Kocamustafaogullari, G. and Ishii, M.: Foundation of the interfacial area transport equation and its closure relations, Int. J. Heat Mass Trans., 38, 481-493, 1995.
    • Lillesand, T. M., Kiefer, R. W., and Chipman, J. W.: Remote Sensing and Image Interpretation, 7th Edn., Wiley, Hoboken, New Jersey, USA, 2015.
    • Ly, S., Charles, C., and Degré, A.: Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale. A review, Biotechnol. Agron. Soc. Environ., 17, 392-406, 2013.
    • Marle, C.: Ècoulements monophasiques en milieu poreux, Revue de L'Institut Français du Pétrole, 22, 1471-1509, 1967.
    • Maugin, G. A.: The Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction, World Scientific Press, Singapore, 1999.
    • McClure, J. E., Prins, J. F., and Miller, C. T.: A Novel Heterogeneous Algorithm to Simulate Multiphase Flow in Porous Media on Multicore CPU-GPU Systems, Comput. Phys. Commun., 185, 1865-1874, doi:10.1016/j.cpc.2014.03.012, 2014a.
    • McClure, J. E., Wang, H., Prins, J. F., Miller, C. T., and Feng, W.: Petascale Application of a Coupled CPU-GPU Algorithm for Simulation and Analysis of Multiphase Flow Solutions in Porous Medium Systems, in: 28th IEEE International Parallel & Distributed Processing Symposium, Phoenix, Arizona, 2014b.
    • McClure, J. E., Berrill, M. A., Gray, W. G. and Miller, C. T.: Tracking Interface and Common Curve Dynamics for Two-Fluid Flow in Porous Media, J. Fluid Mech., 796, 211-232, 2016a.
    • McClure, J. E., Berrill, M. A., Gray, W. G. and Miller, C. T.: Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in twofluid-phase porous medium systems, Phys. Rev. E, 94, 033102, doi:10.1103/PhysRevE.94.033102, 2016b.
    • Miller, C. T., Christakos, G., Imhoff, P. T., McBride, J. F., Pedit, J. A., and Trangenstein, J. A.: Multiphase flow and transport modeling in heterogeneous porous media: Challenges and approaches, Adv. Water Resour., 21, 77-120, 1998.
    • Miller, C. T., Dawson, C. N., Farthing, M. W., Hou, T. Y., Huang, J. F., Kees, C. E., Kelley, C. T., and Langtangen, H. P.: Numerical simulation of water resources problems: Models, methods, and trends, Adv. Water Resour., 51, 405-437, doi:10.1016/j.advwatres.2012.05.008, 2013.
    • Nickerson, C., Ebel, R., Borchers, A., and Carriazo, F.: Major Uses of Land in the United States, 2007, EIB-89, US Department of Agriculture, Economic Research Service, December 2011.
    • Niessner, J., Berg, S., and Hassanizadeh, S. M.: Comparison of Two-Phase Darcy's Law with a Thermodynamically Consistent Approach, Transport Porous Media, 88, 133-148, doi:10.1007/s11242-011-9730-0, 2011.
    • Paiva, R. C. D., Collischonn, W., and Tucci, C. E. M.: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach, J. Hydrol., 406, 170-181, 2011.
    • Panfilov, M.: Macroscale Models of Flow Through Highly Heterogeneous Porous Media, Springer, Dordrecht, the Netherlands, 2000.
    • Pechlivanidis, I. G., Jackson, B. M., McIntyre, N. R., and Wheater, H. S.: Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications, Global NEST J., 13, 193-214, 2011.
    • Reggiani, P., Sivapalan, M., and Hassanizadeh, S. M.: A Unifying Framework for Watershed Thermodynamics: Balance Equations for Mass, Momentum, Energy and Entropy, and the Second Law of Thermodynamics, Adv. Water Resour., 22, 367-398, 1998.
    • Reggiani, P., Hassanizadeh, S. M., Sivapalan, M., and Gray, W. G.: A Unifying Framework for Watershed Thermodynamics: Constitutive Relationships, Adv. Water Resour., 23, 15-39, 1999.
    • Sathe, A. and Mann, J.: A review of turbulence measurements using ground-based wind lidars, Atmos. Meas. Tech., 6, 3147-3167, doi:10.5194/amt-6-3147-2013, 2013.
    • Skøien, J. O., Blöschl, G., and Western, A. W.: Characteristic space scales and timescales in hydrology, Water Resour. Res., 39, 11- 1-11-19, 2003.
    • Vreugdenhil, C. B.: Numerical Methods for Shallow-Water Flow, in: no. 13 in Water Science and Technology Library, Springer, Dordrecht, the Netherlands, 1995.
    • Wang, A., Zeng, X., Shen, S. S. P., Zeng, Q.-C., and Dickinson, R. E.: Time Scales of Land Surface Hydrology, J. Hydrometeorol., 7, 868-879, 2006.
    • Whitaker, S.: Diffusion and Dispersion in Porous Media, Am. Inst. Chem. Eng. J., 13, 420-427, 1967.
    • Whitaker, S.: Flow in Porous Media I: A Theoretical Derivation of Darcy's Law, Transport Porous Media, 1, 3-25, 1986.
    • Whitaker, S.: The Method of Volume Averaging, Kluwer Academic Publishers, Dordrecht, 1999.
    • Wildenschild, D. and Sheppard, A. P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems, Adv. Water Resour., 51, 217-246, 2013.
    • Wood, E. F.: Scaling behaviour of hydrological fluxes and variables: Empirical studies using a hydrological model and remote sensing data, Hydrol. Process., 9, 331-346, 1995.
    • Wood, E. F., Sivapalan, M., Beven, K., and Band, L.: Effects of spatial variability and scale with implications to hydrologic modeling, J. Hydrol., 102, 29-47, 1988.
    • Wood, S. N.: Fast stable direct fitting and smoothness selection for generalized additive models, J. Roy. Stat. Soc. Ser. B, 70, 495- 518, 2008.
    • Zhou, Y. and Li, W.: A review of regional groundwater flow modeling, Geosci. Front., 2, 205-214, 2011.
  • No similar publications.

Share - Bookmark

Cite this article