LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
D. Rosenfeld; G. Liu; X. Yu; Y. Zhu; J. Dai; X. Xu; Z. Yue (2014)
Publisher: Copernicus Publications
Journal: Atmospheric Chemistry and Physics
Languages: English
Types: Article
Subjects: Chemistry, QD1-999, Physics, QC1-999
VIIRS (Visible Infrared Imaging Radiometer Suite), onboard the Suomi NPP (National Polar-orbiting Partnership) satellite, has an improved resolution of 750 m with respect to the 1000 m of the Moderate Resolution Imaging Spectroradiometer for the channels that allow retrieving cloud microphysical parameters such as cloud drop effective radius (re). VIIRS also has an imager with five channels of double resolution of 375 m, which was not designed for retrieving cloud products. A methodology for a high-resolution retrieval of re and microphysical presentation of the cloud field based on the VIIRS imager was developed and evaluated with respect to MODIS in this study. The tripled microphysical resolution with respect to MODIS allows obtaining new insights for cloud–aerosol interactions, especially at the smallest cloud scales, because the VIIRS imager can resolve the small convective elements that are sub-pixel for MODIS cloud products. Examples are given for new insights into ship tracks in marine stratocumulus, pollution tracks from point and diffused sources in stratocumulus and cumulus clouds over land, deep tropical convection in pristine air mass over ocean and land, tropical clouds that develop in smoke from forest fires and in heavy pollution haze over densely populated regions in southeastern Asia, and for pyro-cumulonimbus clouds.
It is found that the VIIRS imager provides more robust physical interpretation and refined information for cloud and aerosol microphysics as compared to MODIS, especially in the initial stage of cloud formation. VIIRS is found to identify significantly more fully cloudy pixels when small boundary layer convective elements are present. This, in turn, allows for a better quantification of cloud–aerosol interactions and impacts on precipitation-forming processes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ayers, G. P: Air pollution and climate change: has air pollution suppressed rainfall over Australia?, Clean Air and Environmental Quality, 39, 51-57, 2005.
    • Bendix, J., Thies, B., Cermak, J., and Nauß, T.: Ground Fog Detection from Space Based on MODIS Daytime Data - A Feasibility Study, Weather Forecast., 20, 989-1005, 2005.
    • Brunner, J. C., Ackerman, S. A., Bachmeier, A. S., and Rabin, R. M.: A Quantitative Analysis of the Enhanced-V Feature in Relation to Severe Weather, Weather Forecast., 22, 853-872, 2007.
    • Coakley, J. A., Bernstein, R. L., and Durkee, P. R.: Effects of shipstack effluents on cloud reflectivity, Science, 237, 1020-1022, 1987.
    • d'Entremont, R. P., and Larry, W.: Thomason: Interpreting Meteorological Satellite Images Using a Color-Composite Technique, B. Am. Meteorol. Soc., 68, 762-768, 1987.
    • Ferek, R. J., Garrett, T., Hobbs, P. V., Strader, S., Johnson, D., Taylor, J. P., Nielsen, K., Ackerman, A. S., Kogan, Y., Liu, Q., Albrecht, B. A., and Babb, D.: Drizzle Suppression in Ship Tracks, J. Atmos. Sci., 57, 2707-2728, 2000.
    • Goren, T., and Rosenfeld, D.: Decomposing aerosol cloud radiative effects into cover, liquid water path and Twomey components in Marine Stratocumulus, Atmos. Res., 113, 378-393, doi:10.1016/j.atmosres.2013.12.008, 2013.
    • Freud, E. and Rosenfeld, D.: Linear relation between convective cloud drop number concentration and depth for rain initiation, J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457, 2012.
    • Freud, E., Rosenfeld, D., and Kulkarni, J. R.: Resolving both entrainment-mixing and number of activated CCN in deep convective clouds, Atmos. Chem. Phys., 11, 12887-12900, doi:10.5194/acp-11-12887-2011, 2011.
    • Hillger, D. T., Kopp, T., Lee, D., Lindsey, C., Seaman, S., Miller, J., Solbrig, S., Kidder, S., Bachmeier, T., Jasmin, T., and Rink, T.: First-Light Imagery from Suomi NPP VIIRS, B. Am. Meteorol. Soc., 94, 1019-1029, doi:10.1175/BAMS-D-12-00097.1, 2013.
    • Inoue, T.: An instantaneous delineation of convective rainfall areas using split window data of NOAA-7 AVHRR, J. Meteor. Soc. Japan, 65, 469-481, 1987.
    • Lensky, I. M. and Rosenfeld, D.: Estimation of precipitation area and rain intensity based on the microphisical properties retrieved from NOAA AVHRR data, J. Appl. Meteorol., 36, 234-242, 1997.
    • Lensky, I. M. and Rosenfeld, D.: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds at nighttime, J. Appl. Meteorol., 42, 1227-1233, 2003a.
    • Lensky, I. M. and Rosenfeld, D.: A night rain delineation algorithm for infrared satellite data, J. Appl. Meteorol., 42, 1218-1226, 2003b.
    • Lensky, I. M. and Rosenfeld, D.: The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius, Atmos. Chem. Phys., 6, 2887-2894, doi:10.5194/acp-6-2887-2006, 2006.
    • Lensky, I. M. and Rosenfeld, D.: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT), Atmos. Chem. Phys., 8, 6739-6753, doi:10.5194/acp-8-6739-2008, 2008.
    • Lindsey, D. T., Hillger, D. W., Grasso, L., Knaff, J. A., and Dostalek, J. F.: GOES Climatology and Analysis of Thunderstorms with Enhanced 3.9-μm Reflectivity, Mon. Weather Rev., 134, 2342- 2353, 2006.
    • Nakajima, T., and King, M. D.: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory, J. Atmos. Sci., 47, 1878-1893, doi:10.1175/1520- 0469(1990)047<1878%3ADOTOTA>2.0.CO%3B2, 1990.
    • Painemal, D., and Zuidema, P.: Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements, J. Geophys. Res., 116, D24206, doi:10.1029/2011JD016155, 2011.
    • Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riédi, J. C., and Frey, R. A.: The MODIS cloud products: Algorithms and examples from Terra, IEEE T. Geosci. Remote, 41, 459-473, 2003.
    • Radke, L. F., Coakley, J. A., and King, M. D.: Direct and remote sensing observations of the effects of ships on clouds, Science, 246, 1146-1149, 1989.
    • Rosenfeld, D.: TRMM Observed First Direct Evidence of Smoke from Forest Fires Inhibiting Rainfall, Geophys. Res. Lett., 26, 3105-3108, 1999.
    • Rosenfeld, D.: Suppression of Rain and Snow by Urban and Industrial Air Pollution, Science, 287, 1793-1796, 2000.
    • Rosenfeld, D. and Lensky, I. M.: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds, B. Am. Meteorol. Soc., 79, 2457-2476, 1998.
    • Rosenfeld, D. and Woodley, W. L.: Closing the 50-year circle: From cloud seeding to space and back to climate change through precipitation physics. Chapter 6 of “Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM)”, edited by: Tao, W.-K. and Adler, R., 234 pp., 59-80, Meteorological Monographs 51, AMS, 2003.
    • Rosenfeld D., Rudich, Y. and Lahav, R.: Desert dust suppressing precipitation- a possible desertification feedback loop, P. Natl. Acad. Sci. USA, 98, 5975-5980, 2001.
    • Rosenfeld, D., Lahav, R., Khain, A. P., and Pinsky, M.: The role of sea-spray in cleansing air pollution over ocean via cloud processes, Science, 297, 1667-1670, 2002.
    • Rosenfeld, D., Cattani, E., Melani, S., and Levizzani, V.: Considerations on daylight operation of 1.6-versus 3.7-μm channel on NOAA and METOP satellites, B. Am. Meteorol. Soc., 85, 873- 881, 2004.
    • Rosenfeld, D., Yu, X., and Dai, J.: Satellite retrieved microstructure of AgI seeding tracks in supercooled layer clouds, J. Appl. Meteorol., 44, 760-767, 2005.
    • Rosenfeld, D., Lensky, I. M., Peterson, J., and Gingis, A.: Potential impacts of air pollution aerosols on precipitation in Australia, Clean Air and Environmental Quality, 40, 2, 43-49, 2006.
    • Rosenfeld, D., Fromm, M., Trentmann, J., Luderer, G., Andreae, M. O., and Servranckx, R.: The Chisholm firestorm: observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus, Atmos. Chem. Phys., 7, 645-659, doi:10.5194/acp-7-645-2007, 2007.
    • Rosenfeld, D., Woodley, W. L., Lerner, A., Kelman, G., and Lindsey, D. T.: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase, J. Geophys. Res., 113, D04208, doi:10.1029/2007JD008600, 2008.
    • Rosenfeld, D., Yu, X., Liu, G., Xu, X., Zhu, Y., Yue, Z., Dai, J., Dong, Z., Dong, Y., and Peng, Y.: Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires, Geophys. Res. Lett., 38, L21804, doi:10.1029/2011GL049423, 2011.
    • Rosenfeld, D., Woodley, W. L., Khain, A., Cotton, W.R., Carrió, G., Ginis, I., and Golden, J. H.: Aerosol effects on Microstructure and Intensity of Tropical Cyclones, B. Ame. Meteorol. Soc., 93, 987-1001, 2012a.
    • Rosenfeld, D., Williams, E., Andreae, M. O., Freud, E., Pöschl, U., and Rennó, N. O.: The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds, Atmos. Meas. Tech., 5, 2039-2055, doi:10.5194/amt-5- 2039-2012, 2012b.
    • Rudich, Y., Rosenfeld, D., and Khersonsky, O.: Treating clouds with a grain of salt, Geophys. Res. Lett., 29, 2060, doi:10.1029/2002GL016055, 2002.
    • Schickel, K. P, Hoffmann, H. E., and Kriebel, K. T.: Identification of icing water clouds by NOAA AVHRR satellite data, Atmos. Res., 34, 177-183, 1994.
    • Sullivan, J., Walton, C., Brown, J., and Evans, R.: Nonlinearity corrections for the thermal infrared channels of the Advanced Very High Resolution Radiometer: Assessment and recommendations, NOAA Tech. Rep. NESDIS 69, 31 pp., 1993.
    • Thompson, G, Bullock, R., and Lee, T. F.: Using Satellite Data to Reduce Spatial Extent of Diagnosed Icing, Weather Forecast., 12, 185-190, 1997.
    • Woodley, W. L, Rosenfeld, D., and Strautins, A.: Identification of a seeding signature in Texas using multi-spectral satellite imagery, J. Wea. Mod., 32, 37-52, 2000.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article