LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Carrasco, Ruben; Streßer, Michael; Horstmann, Jochen (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: G, GE1-350, Geography. Anthropology. Recreation, Environmental sciences

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
Retrieving spectral wave parameters such as the peak wave direction and wave period from marine radar backscatter intensity is very well developed. However, the retrieval of significant wave height is difficult because the radar image spectrum (a backscatter intensity variance spectrum) has to be transferred to a wave spectrum (a surface elevation variance spectrum) using a modulation transfer function (MTF) which requires extensive calibration for each individual radar setup. In contrast to the backscatter intensity, the Doppler velocity measured by a coherent radar is induced by the radial velocity (or line-of-sight velocity) of the surface scattering and its periodic component is mainly the contribution of surface waves. Therefore, the variance of the Doppler velocity can be utilized to retrieve the significant wave height. Analyzing approximately 100 days of Doppler velocity measurements of a coherent-on-receive radar operating at X-band with vertical polarization in transmit and receive, a simple relation was derived and validated to retrieve significant wave heights. Comparison to wave measurements of a wave rider buoy as well as an acoustic wave and current profiler resulted in a root mean square error of 0.24 m with a bias of 0.08 m. Furthermore, the different sources of error are discussed and investigated.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alpers, W. R., Ross, D. B., and Rufenach, C. L.: On the detectability of ocean surface waves by real and synthetic aperture radar, J. Geophys. Res., 86, 6481-6498, 1981.
    • Barrick, D. E.: Near-grazing illumination and shadowing of rough surfaces, Radio Sci., 30, 563-580, doi:10.1029/95RS00835, 1995.
    • Belcher, S. E. and Hunt, J. C. R.: Turbulent flow over hills and waves, Annu. Rev. Fluid Mech., 30, 507-538, 1998.
    • Bell, P. S. and Osler, J.: Mapping bathymetry using X-band marine radar data recorded from a moving vessel, Ocean Dynam., 61, 2141-2156, 2011.
    • Braun, N., Ziemer, F., Bezuglov, A., and Cysewski, M.: Sea-surface current features observed by Doppler-radar, IEEE Trans. Geosci. Remote Sens., 46, 1125-1133, 2008.
    • Buckley, M. P. and Veron, F.: Structure of the airflow above surface waves, J. Phys. Oceanogr., 46, 1377-1397, 2016.
    • Dankert, H. and Horstmann, J.: A marine radar wind sensor, J. Atmos. Ocean. Tech., 24, 1629-1642, doi:10.1175/JTECH2083.1, 2007.
    • Dankert, H. and Rosenthal, W.: Ocean surface determination from X-band radar-image sequences, J. Geophys. Res., 109, C04016, doi:10.1029/2003JC002130, 2004.
    • Dankert, H., Horstmann, J., Lehner, S., and Rosenthal, W.: Detection of wave groups in SAR images and radarimage sequences, IEEE T. Geosci. Remote, 41, 1437-1446, doi:10.1109/TGRS.2003.811815, 2003.
    • Federal Maritime and Hydrographic Agency: FINO database, available at: http://fino.bsh.de/ (last access: November 2015), 2013.
    • Huang, W., Carrasco, R., Chengxi, S., Gill, E. W., and Horstmann, J.: Surface current measurements using X-band marine radar with vertical polarization, IEEE T. Geosci. Remote, 54, 2988- 2997, doi:10.1109/TGRS.2015.2509781, 2016.
    • Hwang, P. A., Sletten, M. A., and Toporkov, J. V.: A note on Doppler processing of coherent radar backscatter from the water surface: With application to ocean surface wave measurements, J. Geophys. Res., 115, C03026, doi:10.1029/2009JC005870, 2010.
    • Lee, P. H. Y., Barter, J. D., Beach, K. L., Hindman, C. L., Lake, B. M., Rungaldier, H., Shelton, J. C., Williams, A. B., Yee, R., and Yuen, H. C.: X band microwave backscattering from ocean waves, J. Geophys. Res., 100, 2591-2611, doi:10.1029/94JC02741, 1995.
    • Lyzenga, D., Maffet, A., and Shuchman, R.: The contribution of wedge scattering to the radar cross section of the ocean surface, IEEE Trans. Geosci. Remote Sens., GE-21, 502-505, 1983.
    • Nieto-Borge, J. C., Reichert, K., and Dittmer, J.: Use of nautical radar as a wave monitoring instrument, Coast. Eng., 3-4, 331- 342, 1999.
    • Nieto-Borge, J. C., Rodrguez, G., Hessner, H., and Izquierdo, P.: Inversion of marine radar images for surface wave analysis, J. Atmos. Ocean. Technol., 21, 1291-1300, 2004.
    • Peirson, W. L. and Andrew, W. G.: On the wind-induced growth of slow water waves of finite steepness, J. Fluid Mech., 608, 243- 274, 2008.
    • Plant, W. J. and Farquharson, G.: Wave shadowing and modulation of microwave backscatter from the ocean, J. Geophys. Res., 117, C08010, doi:10.1029/2012JC007912, 2012.
    • Senet, C., Seemann, J., and Ziemer, F.: The near-surface current velocity determined from image sequences of the sea surface, IEEE Trans. Geosci. Remote Sens., 39, 492-505, doi:10.1109/36.911108, 2001.
    • Senet, C. M., Seemann, J., Flampouris, S., and Ziemer, F.: Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-band radar image sequences of the sea surface, IEEE T. Geosci. Remote, 46, 2267-2279, doi:10.1109/TGRS.2008.916474, 2008.
    • Vicen-Bueno, R., Lidó-Muela, C., and Nieto-Borge, J.: Estimate of significant wave height from non-coherent marine radar images by multilayer perceptrons EURASIP, J. Adv. Signal Process., 84, 1-20, 2012.
    • Vicen-Bueno, R., Horstmann, J., Terril, E., de Paolo, T., and Dannenberg, J.: Real-time ocean wind vector retrieval from marine radar image sequences acquired at grazing angle, J. Atmos. Ocean. Tech., 30, 127-139, doi:10.1175/JTECH-D-12-00027.1, 2013.
    • Wetzel, L.: Electromagnetic scattering from the sea at low grazing angles, in: Surface Waves and Fluxes, edited by: Geernaert, G. L. and Plant, W. L., Vol. 2, Remote Sensing, Kluwer Academic, 109-171, 1990.
    • Young, I., Rosenthal, W., and Ziemer, F.: A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents, J. Geophys. Res., 90, 1049- 1059, 1985.
    • Zrnic´, D. S.: Estimating of spectral moments for weather echoes, IEEE Trans Geosc. Electron., 17, 113-128, doi:10.1109/TGE.1979.294638, 1979.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article