Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Merz, Karl Otto (2016)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TJ807-830, Renewable energy sources
When a wind turbine operates above the rated wind speed, the blade pitch may be governed by a basic single-input–single-output PI controller, with the shaft speed as input. The performance of the wind turbine depends upon the tuning of the gains and filters of this controller. Rules of thumb, based upon pole placement, with a rigid model of the rotor, are inadequate for tuning the controller of large, flexible, offshore wind turbines. It is shown that the appropriate controller tuning is highly dependent upon the characteristics of the aeroelastic model: no single reference controller can be defined for use with all models. As an example, the ubiquitous National Renewable Energy Laboratory (NREL) 5 MW wind turbine controller is unstable when paired with a fully flexible aeroelastic model. A methodical search is conducted, in order to find models with a minimum number of degrees of freedom, which can be used to tune the controller for a fully flexible aeroelastic model; this can be accomplished with a model containing 16–20 states. Transient aerodynamic effects, representing rotor-average properties, account for five of these states. A simple method is proposed to reduce the full transient aerodynamic model, and the associated turbulent wind spectra, to the rotor average. Ocean waves are also an important source of loading; it is recommended that the shaft speed signal be filtered such that wave-driven tower side-to-side vibrations do not appear in the PI controller output. An updated tuning for the NREL 5 MW controller is developed using a Pareto front technique. This fixes the instability and gives good performance with fully flexible aeroelastic models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bossanyi, E. A.: The design of closed loop controllers for wind turbines, Wind Energy, 3, 149-163, doi:10.1002/we.34, 2000.
    • Burton, T., Sharpe, D., Jenkins, N., and Bossanyi, E.: Wind Energy Handbook, Wiley, Chichester, UK, 2001.
    • Dunne, F., Aho, J., and Pao, L. Y.: Analysis of gain-scheduling implementation for the NREL 5-MW turbine blade pitch controller, manuscript accepted for presentation at the American Control Conference, 6-8 July 2016, Boston, MA, USA, 2016.
    • Fischer, T., de Vries, W., and Schmidt, B.: Upwind Design Basis, EU UpWind Project, 2010.
    • Hansen, M. H.: Aeroelastic stability analysis of wind turbines using an eigenvalue approach, Wind Energy, 7, 133-143, doi:10.1002/we.116, 2004.
    • Hansen, M. H., Gaunaa, M., and Madsen, H. A.: A BeddoesLeishman type dynamic stall model in state-space and indicial formulations, Report Risø-R-1354(EN), Risø National Laboratory, 2004.
    • Hansen, M. H., Hansen, A., Larsen, T. J., Øye, S., Sørensen, P., and Fuglsang, P.: Control design for a pitch-regulated, variable speed wind turbine, Report Risø-R-1500(EN), Risø National Laboratory, 2005.
    • Jafarnejadsani, H. and Pieper, J.: Gain-scheduled L1-optimal control of variable-speed-variable-pitch wind turbines, IEEE T. Contr. Sys. T., doi:10.1109/TCST.2014.2320675, 2014.
    • Jonkman, B. and Jonkman, J.: FAST v8.15.00a-bjj, National Renewable Energy Laboratory, 2016.
    • Jonkman, J. and Musial, W.: Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment, Report NREL/TP-5000-48191, National Renewable Energy Laboratory, 2010.
    • Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development, Report NREL/TP-500-38060, National Renewable Energy Laboratory, 2009.
    • Kundur, P.: Power System Stability and Control, McGraw-Hill, New York, USA, 1994.
    • Leithead, W. E. and Connor, B.: Control of variable speed wind turbines: dynamic models, Int. J. Control, 73, 1173-1188, doi:10.1080/002071700417830, 2000.
    • Leishman, J. G.: Challenges in modelling the unsteady aerodynamics of wind turbines, Wind Energy, 5, 85-132, doi:10.1002/we.62, 2002.
    • Merz, K. O.: Rapid optimization of stall-regulated wind turbine blades using a frequency-domain method: Part 1, loads analysis, Wind Energy, 18, 1703-1723, doi:10.1002/we.1786, 2015a.
    • Merz, K. O.: A linear state-space model of an offshore wind turbine, implemented in the STAS wind power plant analysis program, Report TR A7474, SINTEF Energy Research, 2015b.
    • Merz, K. O.: Environmental loads for frequency-domain aeroelastic analysis of offshore wind turbines, Memo AN 15.12.19, SINTEF Energy Research, 2015c.
    • Merz, K. O.: Pitch actuator and generator models for wind turbine control system studies, Memo AN 15.12.35, SINTEF Energy Research, 2015d.
    • Merz, K. O., Muskulus, M., and Moe, G.: A simple frequencydomain method for stress analysis of stall-regulated wind turbines, Wind Energy, 15, 773-798, doi:10.1002/we.504, 2012.
    • Øye, S.: Dynamic stall, simulated as time lag of separation, Proceedings of the fourth IEA symposium on the aerodynamics of wind turbines, 20-21 November 1990, Rome, Italy, 1990.
    • Schlipf, D., Schlipf, D. J., and Kühn, M.: Nonlinear model predictive control of wind turbines, Wind Energy, 16, 1107-1129, doi:10.1002/we.1533, 2013.
    • Snel, H. and Schepers, J. G.: Joint investigation of dynamic inflow effects and implementation of an engineering method, Report ECN-C-094-107, Energy Research Centre of the Netherlands, 1995.
    • Spencer, M. D., Stol, K. A., Unsworth, C. P., Cater, J. E., and Norris, S. E.: Model predictive control of a wind turbine using short-term wind field predictions, Wind Energy, 16, 417-434, doi:10.1002/we.1501, 2013.
    • Sønderby, I. B.: Low-order aeroelastic models of wind turbines for controller design, Doctoral Thesis, Department of Wind Energy, Technical University of Denmark, 2013.
    • Sønderby, I. B. and Hansen, M. H.: Open-loop frequency response analysis of a wind turbine using a high-order linear aeroelastic model, Wind Energy, 17, 1147-1167, doi:10.1002/we.1624, 2014.
    • Tibaldi, C., Hansen, M. H., and Henriksen, L. C.: Optimal tuning for a classical wind turbine controller, J. Phys. Conf. Ser., 555, 012099, doi:10.1088/1742-6596/555/1/012099, 2012.
    • Tibaldi, C., Henriksen, L. C., Hansen, M. H., and Bak, C.: Wind turbine fatigue damage evaluation based on a linear model and a spectral method, Wind Energy, doi:10.1002/we.1898, 2015.
    • van Engelen, T. G. and Braam, H.: TURBU Offshore, computer program for frequency domain analysis of horizontal axis offshore wind turbines, Report ECN-C-04-079, Energy Research Centre of the Netherlands, 2004.
    • van Engelen, T. G. and van der Tempel, J.: Frequency domain load calculation for offshore wind turbines (TURBU Offshore), Report ECN-RX-04-127, Energy Research Centre of the Netherlands, 2004.
    • Wright, A. D.: Modern control design for flexible wind turbines, Report NREL/TP-500-35816, National Renewable Energy Laboratory, 2004.
    • Yang, Z., Li, Y., and Seem, J. E.: Multi-model predictive control for wind turbine operation under meandering wake of upstream turbines, Control Eng. Pract., 45, 37-45, doi:10.1016/j.conengprac.2015.08.009, 2015.
    • Zhou, K., Doyle, J. C., and Glover, K.: Robust and Optimal Control, Prentice Hall, Upper Saddle River, NJ, USA, 1996.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article