Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
K. Förster; K. Förster; F. Oesterle; F. Hanzer; F. Hanzer; J. Schöber; M. Huttenlau; U. Strasser; U. Strasser (2016)
Publisher: Copernicus Publications
Journal: Proceedings of the International Association of Hydrological Sciences
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
The timing and the volume of snow and ice melt in Alpine catchments are crucial for management operations of reservoirs and hydropower generation. Moreover, a sustainable reservoir operation through reservoir storage and flow control as part of flood risk management is important for downstream communities. Forecast systems typically provide predictions for a few days in advance. Reservoir operators would benefit if lead times could be extended in order to optimise the reservoir management. Current seasonal prediction products such as the NCEP (National Centers for Environmental Prediction) Climate Forecast System version 2 (CFSv2) enable seasonal forecasts up to nine months in advance, with of course decreasing accuracy as lead-time increases.

We present a coupled seasonal prediction modelling system that runs at monthly time steps for a small catchment in the Austrian Alps (Gepatschalm). Meteorological forecasts are obtained from the CFSv2 model. Subsequently, these data are downscaled to the Alpine Water balance And Runoff Estimation model AWARE running at monthly time step. Initial conditions are obtained using the physically based, hydro-climatological snow model AMUNDSEN that predicts hourly fields of snow water equivalent and snowmelt at a regular grid with 50 m spacing. Reservoir inflow is calculated taking into account various runs of the CFSv2 model. These simulations are compared with observed inflow volumes for the melting and accumulation period 2015.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Achleitner, S., Schöber, J., Rinderer, M., Leonhardt, G., Schöberl, F., Kirnbauer, R., and Schönlaub, H.: Analyzing the operational performance of the hydrological models in an alpine flood forecasting system, J. Hydrol., 412-413, 90-100, doi:10.1016/j.jhydrol.2011.07.047, 2012.
    • Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P., and Rodrigues, L. R. L.: Seasonal climate predictability and forecasting: Status and prospects, WIREs Clim Change, 4, 245-268, doi:10.1002/wcc.217, 2013.
    • Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753-766, doi:10.5194/tc-9-753-2015, 2015.
    • Hock, R.: A distributed temperature-index ice- and snowmelt model including potential direct solar radiation, J. Glaciol., 45, 101- 111, 1999.
    • Huttenlau, M., Bellinger, J., Schattan, P., Förster, K., Oesterle, F., Schneider, K., Achleitner, S., Schöber, J., Raffeiner, G., and Kirnbauer, R.: Flood forecasting system for the Tyrolean Inn River (Austria): current state and further enhancements of a modular forecasting system for alpine catchments, in: Living with natural risks, 13th Congress INTERPRAEVENT 2016, Lucerne, 909-916, International Research Society INTERPRAEVENT, Klagenfurt, Austria, 2016.
    • Kanamitsu, M., Kumar, A., Juang, H.-M. H., Schemm, J.-K., Wang, W., Yang, F., Hong, S.-Y., Peng, P., Chen, W., Moorthi, S., and Ji, M.: NCEP Dynamical Seasonal Forecast System 2000, B. Am. Meteorol. Soc., 83, 1019-1037, doi:10.1175/1520- 0477(2002)083<1019:NDSFS>2.3.CO;2, 2002.
    • Klemeš, V.: Operational testing of hydrological simulation models, Hydrolog. Sci. J., 31, 13-24, doi:10.1080/02626668609491024, 1986.
    • Klemeš, V.: The modelling of mountain hydrology: the ultimate challenge, in: Hydrology of mountainous areas, edited by: Molnár, L., 29-43, International Association of Hydrological Sciences, Wallingford, 1990.
    • Koboltschnig, G. R. and Schöner, W.: The relevance of glacier melt in the water cycle of the Alps: the example of Austria, Hydrol. Earth Syst. Sci., 15, 2039-2048, doi:10.5194/hess-15-2039- 2011, 2011.
    • Kuentz, A., Mathevet, T., Gailhard, J., and Hingray, B.: Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM model, Hydrol. Earth Syst. Sci., 19, 2717-2736, doi:10.5194/hess-19-2717- 2015, 2015.
    • Marzeion, B., Cogley, J. G., Richter, K., and Parkes, D.: Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes, Science, 345, 919-921, doi:10.1126/science.1254702, 2014.
    • McCabe, G. J. and Markstrom, S. L.: A Monthly Water-Balance Model Driven By a Graphical User Interface, U.S. Geological Survey Open-File report, 2007.
    • Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 50, 885-900, 2007.
    • Rango, A. and Martinec, J.: Revisting the degree-day method for snowmelt computations, J. Am. Water Resour. Assoc., 31, 657- 669, doi:10.1111/j.1752-1688.1995.tb03392.x, 1995.
    • Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.- Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015-1057, doi:10.1175/2010BAMS3001.1, 2010.
    • Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP Climate Forecast System Version 2, J. Climate, 27, 2185-2208, doi:10.1175/JCLI-D-12-00823.1, 2014.
    • Schaefli, B.: Projecting hydropower production under future climates: a guide for decision-makers and modelers to interpret and design climate change impact assessments, WIREs Water, 2, 271-289, doi:10.1002/wat2.1083, 2015.
    • Schueller, F., Förster, K., Hanzer, F., Huttenlau, M., Marzeion, B., Strasser, U., Achleitner, S., and Kirnbauer, R.: Multiscale Snow/Icemelt Discharge Simulations into Alpine Reservoirs: adding Glacier Dynamics to a Hydrological Model, Geophysical Research Abstracts, p. 3244, 2015.
    • Strasser, U.: Modelling of the mountain snow cover in the Berchtesgaden National Park, vol. 55 of Berchtesgaden National Park research report, Nationalparkverwaltung Berchtesgaden, Berchtesgaden, 2008.
    • Strasser, U., Warscher, M., and Liston, G. E.: Modeling SnowCanopy Processes on an Idealized Mountain, J. Hydrometeor., 12, 663-677, doi:10.1175/2011JHM1344.1, 2011.
    • Thornthwaite, C. W.: An Approach toward a Rational Classification of Climate, Geogr. Rev., 38, 55-94, doi:10.2307/210739, 1948.
    • Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner, R.: Mountains of the world, water towers for humanity, Water Resour. Res., 43, 1-13, W07447, doi:10.1029/2006WR005653, 2007.
    • Wood, A. W., Maurer, E. P., Kumar, A., and Lettenmaier, D. P.: Long-range experimental hydrologic forecasting for the eastern United States, J. Geophys. Res., 107, 4429 (1-16), doi:10.1029/2001JD000659, 2002.
    • Yuan, X., Wood, E. F., Luo, L., and Pan, M.: A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction, Geophys. Res. Lett., 38, 1-7, L13402, doi:10.1029/2011GL047792, 2011.
    • Yuan, X., Wood, E. F., and Ma, Z.: A review on climatemodel-based seasonal hydrologic forecasting: Physical understanding and system development, WIREs Water, 2, 523-536, doi:10.1002/wat2.1088, 2015.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.