LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shi, D.; Xu, Y.; Morel, F. M. M. (2009)
Languages: English
Types: Article
Subjects:
The control of key chemical parameters in phytoplankton cultures, such as pCO2, pH and Ω (the saturation state of calcium carbonate), is made difficult by the interdependence of these parameters and by the changes resulting from the growth of the organisms, such as CO2 fixation, nutrient uptake and, for coccolithophores, calcite precipitation. Even in cultures where pCO2 or pH is maintained constant, other chemical parameters change substantially at high cell densities. Experimentally we observed that various methods of adjustment of pCO2/pH – acid or base addition, use of buffers or pH-stats, or bubbling of CO2-enriched air – can be used, the choice of one or the other depending on the goals of the experiments. At seawater pH, we measured the same growth rates in cultures of the diatom Thalassiosira weissflogii where the pCO2/pH was controlled by these different methods. The pH/pCO2 control method also did not affect the rates of growth or calcification of the coccolithophore Emiliania huxleyi at seawater pH. At lower pH/higher pCO2, in the E. huxleyi strain PLY M219, we observed increases in rates of carbon fixation and calcification per cell, along with a slight increase in growth rate, except in bubbled cultures. In our hands, the bubbling of cultures seemed to induce more variable results than other methods of pCO2/pH control. While highly convenient, the addition of pH buffers to the medium apparently induces changes in trace metal availability and cannot be used under trace metal-limiting conditions.

Share - Bookmark

Download from

Cite this article

Collected from