Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Amato , Pierre; Demeer , F.; Melaouhi , A.; Fontanella , Stéphane; Martin-Biesse , A.-S.; Sancelme , M.; Laj , Paolo; Delort , A.M. (2007)
Publisher: European Geosciences Union
Journal: Atmospheric Chemistry and Physics
Languages: English
Types: Article
Subjects: Chemistry, DOAJ:Earth and Environmental Sciences, [ CHIM.OTHE ] Chemical Sciences/Other, QD1-999, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, G, Geography. Anthropology. Recreation, QC801-809, Geophysics. Cosmic physics, GE1-350, DOAJ:Environmental Sciences, Physics, Environmental sciences, QC1-999
The interactions between microbial and chemical contents of cloud water were investigated. First, we observe that the bulk cloud water solution provides a substantial environment where bacteria can develop significantly. Then, a total number of 60 microbial strains originating from seven distinct samples of cloud water and affiliated to various taxonomic groups were examined for their ability to degrade some of the main atmospheric carboxylic compounds: formate, acetate, lactate, succinate, as well as formaldehyde and methanol. Biodegradation tests show that all these compounds can be transformed when used as single carbonaceous substrates, with activities depending on both the strain and the compound. The highest capacities of biodegradation are observed towards formaldehyde, formate and acetate, which are also the more concentrated compounds typically measured in cloud water. Hence, analyses by <sup>1</sup>H NMR permitted to establish for instance that compounds like pyruvate or fumarate can be produced and released in the media in relation to the transformation of lactate or succinate. In addition, utilization of <sup>13</sup>C labelled formaldehyde showed that it can be transformed through many metabolic pathways, similar to those induced by photochemistry and leading to the production of formate and/or methanol. These results suggest that microorganisms of cloud water can have various behaviours towards the chemical compounds present in the atmosphere: they can represent either a sink or source for organic carbon, and may have to be considered as actors of cloud chemistry.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Amato, P., Me´nager, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A-M.: Microbial population in cloud water at the Puy de Doˆme: implications for the chemistry of clouds, Atmos. Environ., 39, 4143-4153, 2005.
    • Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A-M.: Microorganisms isolated from the water phase of tropospheric clouds at the puy de Doˆme: major groups and growth abilities at low temperature, FEMS Microbiol. Ecol., 59, 255-264, 2007a.
    • Amato, P., Parazols, M., Sancelme, M., Mailhot, G., Laj, P., and Delort, A-M.: An important oceanic source of micro-organisms for cloud water at the puy de Doˆme (France), Atmos. Environ., in press, doi:10.1016/j.atmosenv.2007.06.022, 2007b.
    • Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological degradation of atmospheric organic compounds, Geophys. Res. Lett., 29, 2077-2081, 2002.
    • Ariya, P. A. and Amyot, M.: New directions: the role of bioaerosols in atmospheric chemistry and physics, Atmos. Environ., 38, 1231-1232, 2004.
    • Bauer, H., Kasper-Giebl, A., Lo¨flund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., and Puxbaum, H.: The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols, Atmos. Res., 64, 109-119, 2002.
    • Chameides, W. L. and Davis, D. D.: Aqueous-phase source for formic acid in clouds, Nature, 304, 427-429, 1983.
    • Delort, A-M.: Use of NMR to study in situ bioconversion of gaseous compounds, Chapter 9, in: Gas resources for resource recovery, edited by: Lens. P., IWA Publishing, London, 117-131, 2006.
    • Fuzzi, S., Mandrioli, P., and Perfetto, A.: Fog droplets - An atmospheric source of secondary biological aerosol particles, Atmos. Environ., 31, 287-290, 1997.
    • Fuzzi, S., Facchini, M. C., Decesari, S., Matta, E., and Mircea, M.: Soluble organic compounds in fog and cloud droplets: what have we learned over the past few years?, Atmos. Res., 64, 89-98, 2002.
    • Granby, K., Christensen, C. S., and Lohse, C.: Urban and semi-rural observations of carboxylic acids and carbonyls, Atmos. Environ., 31, 1403-1415, 1997.
    • Grosjean, D.: Organic acids in south California air: ambient concentrations, mobile source emissions, in situ formation and removal processes, Environ. Sci. Technol., 23, 1506-1514, 1989.
    • Kato, N., Kobayashi, T., Shimao, M., and Sakazawa, C.: Properties of formaldehyde dismutation catalyzing enzyme of Pseudomonas putida F61-a, J. Biotechnol., 1, 295-273, 1984.
    • Kawamura, K., Steinberg, S., Ng, L., and Kaplan, I. R.: Wet deposition of low molecular weight mono- and di-carboxilic acids, aldehydes and inorganic species in Los Angeles, Atmos. Environ., 35, 3917-3926, 2001.
    • KEGG PATHWAY database (Kyoto Encyclopedia of Genes and Genomes) http://www.genome.jp/kegg/pathway.html, last access: January 2007.
    • Kell, D. B., Peck, M. W., Rodger, G., and Morris, J. G.: On the permeability of weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum, Biochem. Biophys. Res. Commun., 99, 81-88, 1981.
    • Kieber, R. J., Rhines, M. F., Willey, J. D., and Brooks Avery Jr., D.: Rainwater formaldehyde: concentration, deposition and photochemical formation, Atmos. Environ., 33, 3659-3667, 1999.
    • Kitahara, K., Obayashi, A., and Fukui, S.: Racemase I cell-free racemase, Enzymologia, 15, 259-266, 1953.
    • Kumar, N., Kulshrestha, U. C., Khare, P., Saxena, A., Kumari, K. M., and Srivastava, S. S.: Measurements of formic and acetic acid levels in the vapor phase at Dayalbagh, Agra, India, Atmos. Environ., 30, 20, 3545-3550, 1996.
    • Lo¨flund, M., Kasper-Giebl, A., Schuster, B., Giebl, H., Hitzenberger, R., and Puxbaum, H.: Formic, acetic oxalic and succinic acid concentrations and their contribution to organic carbon in cloud water, Atmos. Environ., 36, 1553-1558, 2002.
    • Marinoni, A., Laj, P., Sellegri, K., and Mailhot, G.: Cloud chemistry at the puy de Doˆme: variability and relationships with environmental factors, Atmos. Chem. Phys., 4, 715-728, 2004, http://www.atmos-chem-phys.net/4/715/2004/.
    • Mason, R. P. and Sanders, J. K.: In vivo enzymology: a deuterium NMR study of formaldehyde dismutase in Pseudomonas putida F61a and Staphylococcus aureus, Biochemistry, 28, 2160-2168, 1989.
    • Monod, A., Chebbi, A., Durand-Jolibois, R., and Carlier, P.: Oxidation of methanol by hydroxyl radicals in aqueous solution under simulated cloud droplet conditions, Atmos. Environ., 34, 5283- 5294, 2000.
    • Murdanoto, A. P., Sakai, Y., Konishi, T., Yasuda, F., Tani, Y., and Kato, N.: Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts, Appl. Environ. Microbiol., 63, 1715-1720, 1997.
    • Parazols, M., Marinoni, A., Amato, P., Abida, O., Laj, P., and Mailhot, G.: Speciation and role of iron in cloud droplets at the puy de Doˆme station, J. Atmos. Chem., 54, 267-281, 2006.
    • Puxbaum, H., Rosenberg, C., Gregori, M., Lanzerstorfer, C., Ober, E., and Winiwarter, W.: Atmospheric concentrations of formic and acetic acid in eastern and northern Austria, Atmos. Environ., 22, 2841-2850, 1988.
    • Riedel, K., Weller, R., and Schrems, O.: Variability of formaldehyde in the Antarctic atmosphere, Phys. Chem. Chem. Phys., 1, 5523-5527, 1999.
    • Sattler, B., Puxbaum, H., and Psenner, R.: Bacterial growth in supercooled could droplets, Geophys. Res. Lett., 28, 239-242, 2001.
    • Satsumabayashi, H., Kurita, H., Chang, Y.-S., Carmichael, G. R., and Ueda, H.: Photochemical formations of lower aldehydes and lower fatty acids under long-range transport in central Japan, Atmos. Environ., 29, 255-266, 1995.
    • Sellegri, K., Laj, P., Marinoni, A., Dupuy, R., Legrand, M., and Preunkert, S.: Contribution of gaseous and particulate species to droplet solute composition at the Puy de Doˆme, France, Atmos. Chem. Phys., 3, 1509-1522, 2003, http://www.atmos-chem-phys.net/3/1509/2003/.
    • Suzuki, Y., Imai, S., Kawakami, M., Masuda, K., and Akasaka, K.: Identification and determination of low-molecular weight organic compounds in contaminated fog water using proton nuclear magnetic resonance spectroscopy, Bull. Environ. Contam. Toxicol., 60, 355-362, 1998.
    • Van Pinxteren, D., Plewka, A., Hofmann, D., Mu¨ller, K., Kramberger, H., Svrcina, B., Ba¨chmann, K., Jaeschke, W., Mertes, S., Collett Jr., J. L., and Herrmann, H.: Schmu¨cke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): organic compounds, Atmos. Environ., 39, 4305-4320, 2005.
    • Voisin, D., Legrand, M., and Chaumerliac, N.: Scavenging of acidic gases (HCOOH, CH3COOH, HNO3, HCl and SO2) and ammonia in mixed liquid-solid water clouds at the Puy de Doˆme mountain (France), J. Geophys. Res., 105, 6817-6835, 2000.
    • Vorholt, J. A.: Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria, Arch. Microbiol., 178, 239- 249, 2002.
  • No related research data.
  • No similar publications.