LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Müller , R.; Grooß , J.-U.; Lemmen , C.; Heinze , D.; Dameris , M.; Bodeker , G. (2007)
Publisher: European Geosciences Union
Journal: Atmospheric Chemistry and Physics Discussions
Languages: English
Types: Article
Subjects: Chemistry, DOAJ:Earth and Environmental Sciences, QD1-999, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, G, Geography. Anthropology. Recreation, J, QC801-809, Geophysics. Cosmic physics, Physics, GE1-350, DOAJ:Environmental Sciences, Environmental sciences, QC1-999
ddc: ddc:550
We investigate the extent to which commonly considered quantities, based on total column ozone observations and simulations, are applicable as measures of ozone loss in the polar vortices. Such quantities have been used frequently in ozone assessments by the World Meteorological Organization (WMO) and to assess the performance of chemistry-climate models. The most commonly considered quantity is monthly mean column ozone poleward of a latitude of 63&deg; in spring. For the Arctic, these monthly means were found to be insensitive to the exact choice of the latitude threshold, unlike the Antarctic where greater sensitivity was found. Choosing a threshold based on the location of the transport barrier at the vortex boundary instead of geometric latitude led to a roughly similar year-to-year variability of the monthly means, but in particular years deviations of several tens of Dobson units occurred. Moreover, the minimum of daily total ozone minima poleward of a particular latitude, another popular measure, is debatable, insofar as it relies on one single measurement or model grid point. For Arctic conditions, this minimum value occurred often in air <i>outside</i> polar vortex, both in the observations and in a chemistry-climate model. As a result, we recommend that the minimum of daily minima no longer be used when comparing polar ozone loss in observations and models. As a possible alternative, we suggest considering the minimum of daily average total ozone poleward of a particular equivalent latitude (or in the vortex) in spring. This definition both obviates relying on one single data point and reduces the impact of year-to-year variability in the Arctic vortex breakup on ozone loss measures. However, compact relations of such simple measures with meteorological quantities that describe the potential for polar heterogeneous chlorine activation and thus ozone loss were not found. Therefore, we argue that where possible, more sophisticated measures of chemical polar ozone loss that include additional information to disentangle the impact of transport and chemistry on ozone, should be employed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Austin, J., Shindell, D., Beagley, S. R., Bru¨hl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T. G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1-27, 2003, http://www.atmos-chem-phys.net/3/1/2003/. 9831, 9832, 9837, 9838
    • Bodeker, G., Scott, J., Kreher, K., and McKenzie, R.: Global ozone trends in potential vorticity coordinates using TOMS and GOME intercompared against the Dobson network: 1978- 1998, J. Geophys. Res., 106, 23 029-23 042, 2001. 9837, 9841 Bodeker, G., Struthers, H., and Connor, B.: Dynamical containment of Antarctic ozone depletion, Geophys. Res. Lett., 29, 1098, doi:10.1029/2001GL014206, 2002. 9837, 9842
    • 5 Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603-2615, 2005, http://www.atmos-chem-phys.net/5/2603/2005/. 9831, 9832, 9833 Bro¨nnimann, S., Staehelin, J., Farmer, S., Svendby, T., and Svenøe, T.: Total ozone observations prior to the IGY. I: A history, Q. J. R. Meteorol. Soc., 129, 2797-2817, 2003. 9844
    • 10 Brunner, D., Staehelin, J., Ku¨nsch, H.-R., and Bodeker, G.: A Kalman filter reconstruction of the vertical ozone distribution in an equivalent latitude-potential temperature framework from TOMS/GOME/SBUV total ozone observations, J. Geophys. Res., 111, D12308, doi: 10.1029/2005JD006279, 2006. 9837 Butchart, N. and Remsberg, E. E.: The area of the stratospheric polar vortex as a diagnostic
    • 15 for tracer transport on an isentropic surface, J. Atmos. Sci., 43, 1319-1339, 1986. 9835 Christensen, T., Knudsen, B. M., Streibel, M., Anderson, S. B., Benesova, A., Braathen, G., Davies, J., Backer, H., Dorokhov, H. D. V., Gerding, M., Gil, M., Henchoz, B., Kelder, H., Kivi, R., Kyro¨, E., Litynska, Moore, D., Peters, G., Skrivankova, P., Stu¨bi, R., Turunen, T., Vaughan, G., Viatte, P., Vik, A. F., von der Gathen, P., and Zaitcev, I.: Vortex-averaged Arctic
    • 20 ozone depletion in the winter 2002/2003, Atmos. Chem. Phys., 5, 131-138, 2005, http://www.atmos-chem-phys.net/5/131/2005/. 9831 Chubachi, S.: Preliminary result of ozone observations at Syowa station from February 1982 to January 1983, Mem. Natl. Inst. Polar Res. Spec. Issue, 34, 13-19, 1984. 9844 Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt,
    • 25 C., Stenke, A., Steil, B., Bru¨hl, C., and Giorgetta, M. A.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing, Atmos. Chem. Phys., 5, 2121-2145, 2005, http://www.atmos-chem-phys.net/5/2121/2005/. 9839, 9841, 9861 Dobson, G. M. B.: Forty years' research on atmospheric ozone at Oxford: a history, Appl. Opt.,
    • 30 7, 387-405, 1968. 9844 Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G. E., Boville, B. A., Bru¨hl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E., Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Nagashima, T., Nielsen, E., Newman, P. A., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Shepherd, T. G., Shibata, K., Stolarski, R. S., Struthers, H., Tian, W., and Yoshiki, M.: Assessment of temperature, trace species and ozone in chemistry-climate simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327, 2006. 9831, 9832, 9837, 9839
    • Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207-210, 1985. 9844
    • Fusco, A. and Salby, M.: Interannual variations of total ozone and their relationship to variations of planetary wave activity, J. Climate, 12, 1619-1629, 1999. 9845
    • Goutail, F., Pommereau, J.-P., Lefe` vre, F., Roozendael, M. V., Andersen, S. B., Ka˚ stad-Høiskar, B.-A., Dorokhov, V., Kyro¨ , E., Chipperfield, M. P., and Feng, W.: Early unusual ozone loss during the Arctic winter 2002/2003 compared to other winters, Atmos. Chem. Phys., 5, 665- 677, 2005, http://www.atmos-chem-phys.net/5/665/2005/. 9831
    • Greenblatt, J. B., Jost, H.-J., Loewenstein, M., Podolske, J. R., Bui, T. P., Hurst, D. F., Elkins, J. W., Herman, R. L., Webster, C. R., Schauffler, S. M., Atlas, E. L., Newman, P. A., Lait, L. L., M u¨ller, M., Engel, A., and Schmidt, U.: Defining the polar vortex edge from an N2O:potential temperature correlation, J. Geophys. Res., 107, 8268, doi:10.1029/2001JD000575, 2002. 9835
    • Harris, N. R., Rex, M., Goutail, F., Knudsen, B. M., Manney, G. L., M u¨ller, R., and von der Gathen, P.: Comparison of empirically derived ozone loss rates in the Arctic vortex, J. Geophys. Res., 107, 8264, doi:10.1029/2001JD000482, 2002. 9831, 9847
    • Hein, R., Dameris, M., Schnadt, C., Land, C., Grewe, V., Ko¨ hler, I., Ponater, M., Sausen, R., Steil, B., Landgraf, J., and Br u¨hl, C.: Results of an interactively coupled atmospheric chemistry-general circulation model: Comparison with observations, Ann. Geophys., 19, 435-457, 2001, http://www.ann-geophys.net/19/435/2001/. 9838
    • Huck, P., Tilmes, S., Randel, W., McDonald, A., and Nakajima, H.: An Improved measure for ozone depletion in the Antarctic stratosphere, J. Geophys. Res., accepted, doi:10.1029/XX, 2007. 9831
    • IPCC/TEAP: Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, edited by B. Metz, L. Kuijpers, S. Solomon, S. O. Andersen, O. Davidson, J. Pons, D. de Jager, T. Kestin, M. Manning and L. Meyer, 2005. 9832, 9836 Jin, J. J., Semeniuk, K., Manney, G. L., Jonsson, A. I., Beagley, S. R., McConnell, J. C., Dufour,
    • 5 G., Nassar, R., Boone, C. D., Walker, K. A., Bernath, P. F., and Rinsland, C. P.: Severe Arctic ozone loss in the winter 2004/2005: observations from ACE-FTS, Geophys. Res. Lett., 33, D15801, doi:10.1029/2006GL026752, 2006. 9831 Jones, A. E. and Shanklin, J. D.: Continued decline of total ozone over Halley, Antarctica since 1985, Nature, 376, 409-411, 1995. 9831
    • 10 Karpetchko, A., Kyro¨, E., and Knudsen, B.: Arctic and Antarctic polar vortices 1957-2002 as seen from the ERA-40 reanalyses, J. Geophys. Res., 110, D21109, doi:10.1029/ 2005JD006113, 2005. 9832, 9835, 9840, 9841, 9842, 9843 Knudsen, B. M.: Interactive comment on “Uncertainties and assessments of chemistry-climate models of the stratosphere” by J. Austin et al., Atmos. Chem. Phys. Discuss., 2, S323-S324,
    • 15 2002. 9832 Kru¨ger, K., Naujokat, B., and Labitzke, K.: The unusual midwinter warming in the southern hemisphere stratosphere 2002: A Comparison to northern hemisphere phenomena, J. Atmos. Sci., 62, 603-613, 2005. 9837 Lait, L. R.: An alternative form for potential vorticity, J. Atmos. Sci., 51, 1754-1759, 1994. 9840
    • 20 Lary, D. J., Chipperfield, M. P., Pyle, J. A., Norton, W. A., and Riishøjgaard, L. P.: Threedimensional tracer initialization and general diagnostics using equivalent PV latitudepotential-temperature coordinates, Q. J. R. Meteorol. Soc., 121, 187-210, 1995. 9835 Lemmen, C.: Future polar ozone: predictions of Arctic ozone recovery in a changing climate, Dissertation, Bergische Universita¨t Wuppertal, 2005. 9839, 9840
    • 25 Lemmen, C., Dameris, M., Mu¨ller, R., and Riese, M.: Chemical ozone loss in a chemistryclimate model from 1960 to 1999, Geophys. Res. Lett., 33, L15820, doi:10.1029/ 2006GL026939, 2006a. 9841 Lemmen, C., Mu¨ller, R., Konopka, P., and Dameris, M.: Critique of the Tracer-tracer correlation technique and its potential to analyse polar ozone loss in chemistry-climate models, J. Geo-
    • 30 phys. Res., 111, D18307, doi:10.1029/2006JD007298, 2006b. 9831, 9840, 9841, 9847 Manney, G., Santee, M., Froidevaux, L., Hoppel, K., Livesey, N., and Waters, J.: EOS MLS observations of ozone loss in the 2004-2005 Arctic winter, Geophys. Res. Lett., 33, L04802, doi:10.1029/2005GL024494, 2006. 9831 Manney, G. L., Froidevaux, L., Waters, J. W., Zurek, R. W., Read, W. G., Elson, L. S., Kumer, J. B., Mergenthaler, J. L., Roche, A. E., O'Neill, A., Harwood, R. S., MacKenzie, I., and Swinbank, R.: Chemical depletion of ozone in the Arctic lower stratosphere during winter 1992-93, Nature, 370, 429-434, 1994. 9831
    • 5 Manney, G. L., Froidevaux, L., Santee, M. L., Zurek, R. W., and Waters, J. W.: MLS observations of Arctic ozone loss in 1996-97, Geophys. Res. Lett., 24, 2697-2700, doi: 10.1029/97GL52827, 1997. 9836 Manney, G. L., Froidevaux, L., Santee, M. L., Livesey, N. J., Sabutis, J. L., and Waters, J. W.: Variability of ozone loss during Arctic winter (1991 to 2000) estimated from UARS Microwave
    • 10 Limb Sounder measurements, J. Geophys. Res., 108, doi:10.1029/2002JD002634, 2003. 9831, 9834 McKenna, D. S., Grooß, J.-U., Gu¨nther, G., Konopka, P., Mu¨ller, R., Carver, G., and Sasano, Y.: A new Chemical Lagrangian Model of the Stratosphere (CLaMS): 2. Formulation of chemistry scheme and initialization, J. Geophys. Res., 107, 4256, doi:10.1029/2000JD000113, 2002.
    • 15 9836 Mu¨ller, R.: Impact of cosmic rays on stratospheric chlorine chemistry and ozone depletion, Phys. Rev. Lett., 91, 058 502, 2003. 9831 Mu¨ller, R. and Gu¨nther, G.: A generalized form of Lait's modified potential vorticity, J. Atmos. Sci., 60, 2229-2237, 2003. 9835
    • 20 Mu¨ller, R., Crutzen, P. J., Grooß, J.-U., Bru¨hl, C., Russel III, J. M., and Tuck, A. F.: Chlorine activation and ozone depletion in the Arctic vortex: Observations by the Halogen Occultation Experiment on the Upper Atmosphere Research Satellite, J. Geophys. Res., 101, 12 531- 12 554, 1996. 9831 Mu¨ller, R., Tilmes, S., Konopka, P., Grooß, J.-U., and Jost, H.-J.: Impact of mixing and chemical
    • 25 change on ozone-tracer relations in the polar vortex, Atmos. Chem. Phys., 5, 3139-3151, 2005, http://www.atmos-chem-phys.net/5/3139/2005/. 9841 Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R.: An objective determination of the polar vortex using Ertel's potential vorticity, J. Geophys. Res., 101, 9471-9478, 1996.
    • 30 9835, 9836, 9840, 9842, 9846, 9857, 9858, 9859 Newman, P. A. and Nash, E. R.: The unusual southern hemisphere stratosphere winter of 2002, J. Atmos. Sci., 62, 614-628, 2006. 9837 Newman, P. A., Gleason, F., McPeters, R., and Stolarski, R.: Anomalously low ozone over the Arctic, Geophys. Res. Lett., 24, 2689-2692, doi:10.1029/97GL52381, 1997. 9831, 9832, 9834, 9836 Newman, P. A., Nash, E. R., and Rosenfield, J. E.: What controls the temperature of the Arctic stratosphere during the spring?, J. Geophys. Res., 106, 19 999-20 010, doi:10.1029/
    • 5 2000JD000061, 2001. 9845 Newman, P. A., Kawa, S. R., and Nash, E. R.: On the size of the Antarctic ozone hole, Geophys. Res. Lett., 31, L21104, doi:10.1029/2004GL020596, 2004. 9831 Proffitt, M. H., Margitan, J. J., Kelly, K. K., Loewenstein, M., Podolske, J. R., and Chan, K. R.: Ozone loss in the Arctic polar vortex inferred from high altitude aircraft measurements, Na-
    • 10 ture, 347, 31-36, 1990. 9831, 9841 Rex, M., Salawitch, R. J., Harris, N. R. P., von der Gathen, P., Schulz, G. O. B. A., Deckelman, H., Chipperfield, M., Sinnhuber, B.-M., Reimer, E., Alfier, R., Bevilacqua, R., Hoppel, K., Fromm, M., Lumpe, J., Ku¨llmann, H., Kleinbo¨hl, A., von Ko¨nig, H. B. M., Ku¨nzi, K., Toohey, D., Vo¨mel, H., Richard, E., Aiken, K., Jost, H., Greenblatt, J. B., Loewenstein, M., Podolske,
    • 15 J. R., Webster, C. R., Flesch, G. J., Scott, D. C., Herman, R. L., Elkins, J. W., Ray, E. A., Moore, F. L., Hurst, D. F., Romanshkin, P., Toon, G. C., Sen, B., Margitan, J. J., Wennberg, P., Neuber, R., Allart, M., Bojkov, B. R., Claude, H., Davies, J., Davies, W., De Backer, H., Dier, H., Dorokhov, V., Fast, H., Kondo, Y., Kyro¨, E., Litynska, Z., Mikkelsen, I. S., Molyneux, M. J., Moran, E., Nagai, T., Nakane, H., Parrondo, C., Ravegnani, F., Viatte, P. S. P., and
    • 20 Yushkov, V.: Chemical depletion of Arctic ozone in winter 1999/2000, J. Geophys. Res., 107, 8276, doi:10.1029/2001JD000533, 2002. 9831 Rex, M., Salawitch, R. J., von der Gathen, P., Harris, N. R., Chipperfield, M. P., and Naujokat, B.: Arctic ozone loss and climate change, Geophys. Res. Lett., 31, doi:10.1029/2003GL018844, 2004. 9831, 9836, 9842, 9843, 9846, 9847
    • 25 Rex, M., Salawitch, R., Deckelmann, H., von der Gathen, P., Harris, N., Chipperfield, M., Naujokat, B., Reimer, E., Allaart, M., Andersen, S., Bevilacqua, R., Braathen, G., Claude, H., Davies, J., Backer, H. D., Dier, H., Dorokov, V., Fast, H., Gerding, M., Godin-Beekmann, S., Hoppel, K., Johnson, B., Kyro¨, E., Litynska, Z., Moore, D., Nakane, H., Parrondo, M., Risley, A., Jr., Skrivankova, P., Stu¨bi, R., Viatte, P., Yushkov, V., and Zerefos, C.: Arctic winter
    • 30 2005: Implications for stratospheric ozone loss and climate change, Geophys. Res. Lett., 33, L23803, doi:10.1029/2006GL026731, 2006. 9831 Schnadt, C.: Untersuchung der zeitlichen Entwicklung der stratospha¨rischen Chemie mit einem interaktiv gekoppelten Klima-Chemie-Modell, Dissertation, Universita¨t Mu¨nchen, Institut fu¨r Physik der Atmospha¨re des DLR, Oberpfaffenhofen, 2001. 9839 Schnadt, C., Dameris, M., Ponater, M., Hein, R., Grewe, V., and Steil, B.: Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone, Clim. Dyn., 18, 501-517, 2002. 9838, 9839
    • 5 Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1926-1996, J. Geophys. Res., 103, 5827-5841, 1998. 9844 Stolarski, R. S., Krueger, A. J., Schoeberl, M. R., McPeters, R. D., Newman, P. A., and Alpert, J. C.: Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease, Nature, 322, 808-811, 1986. 9844
    • 10 Swinbank, R. and O'Neill, A.: A Stratosphere-Troposphere Data Assimilation System, Mon Wea Rev, 122, 686-702, 1994. 9866 Tilmes, S., Mu¨ller, R., Grooß, J.-U., and Russell, J. M.: Ozone loss and chlorine activation in the Arctic winters 1991-2003 derived with the tracer-tracer correlations, Atmos. Chem. Phys., 4, 2181-2213, 2004,
    • 15 http://www.atmos-chem-phys.net/4/2181/2004/. 9831, 9834, 9841, 9843 Tilmes, S., Mu¨ller, R., Engel, A., Rex, M., and Russell III, J.: Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005, Geophys. Res. Lett., 33, L20812, doi: 10.1029/2006GL026925, 2006. 9831, 9835, 9836, 9843, 9844, 9846, 9847, 9866 von Hobe, M., Ulanovsky, A., Volk, C. M., Grooß, J.-U., Tilmes, S., Konopka, P., Gu¨nther, G.,
    • 20 Werner, A., Spelten, N., Shur, G., Yushkov, V., Ravegnani, F., Schiller, C., Mu¨ller, R., and Stroh, F.: Severe ozone depletion in the cold Arctic winter 2004-05, Geophys. Res. Lett., 13, L17815, doi:10.1029/2006GL026945, 2006. 9831 Waugh, D. W. and Randel, W. J.: Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics, J. Atmos. Sci., 56, 1594-1613, 1999. 9832, 9836, 9843
    • 25 Weber, M., Dhomse, S., Wittrock, F., Richter, A., Sinnhuber, B., and Burrows, J.: Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995-2002, Geophys. Res. Lett., 30, 1583, doi:10.1029/2002GL016799, 2003. 9845 WMO: Scientific assessment of ozone depletion: 1998, Global Ozone Research and Monitoring Project-Report No. 44, Geneva, Switzerland, 1999. 9831, 9836
    • 30 WMO: Scientific assessment of ozone depletion: 2002, Global Ozone Research and Monitoring Project-Report No. 47, Geneva, Switzerland, 2003. 9831, 9832, 9837, 9838 WMO: Scientific assessment of ozone depletion: 2006, Global Ozone Research and Monitoring Project-Report No. 50, Geneva, Switzerland, 2007. 9831, 9832, 9836, 9837, 9838, 9844,
  • No related research data.
  • No similar publications.