LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
D. L. Hysell; E. Kudeki; J. L. Chau (2005)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, Science, Physics, QC1-999, QC801-809

Classified by OpenAIRE into

arxiv: Physics::Space Physics, Physics::Geophysics
International audience; Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600?2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles.

Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities) ? Space plasma physics (Waves and instabilities)
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anandarao, B. G., Raghavararao, R., Desai, J. N., and Haerendel, G.: Vertical winds and turbulence over Thumba, J. Atmos. Terr. Phys., 40, 157-163, 1978.
    • Chakrabarti, N. and Lakhina, G. S.: Nonlinear saturation of Rayleigh-Taylor instability and generation of shear flow in equatorial spread-F plasma, Nonlin. Proc. in Geophys., 8, 181-190, 2001.
    • Chakrabarti, N. and Lakhina, G. S.: Collisional Rayleigh-Taylor instability and shear-flow in equatorial spread F plasma, Ann. Geophys., 21, 1153-1157, 2003, SRef-ID: 1432-0576/ag/2003-21-1153.
    • Eccles, J. V.: A simple model of low-latitude electric fields, J. Geophys. Res., 103, 26 699-26 708, 1998.
    • Eccles, J. V., Maynard, N., and Wilson, G.: Study of the evening drift vortex in the low-latitude ionosphere using San Marco electric field measurements, J. Geophys. Res., 104, 28 133-28 143, 1999.
    • Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F.: The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 91, 13 723-13 728, 1986.
    • Fejer, B. G.: The equatorial ionospheric electric fields. A review, J. Atmos. Terr. Phys., 43, 377-386, 1981.
    • Flaherty, J. P., Seyler, C. E., and Trefethen, L. N.: Large-amplitude transient growth in the linear evolution of equatorial spread F with a sheared zonal flow, J. Geophys. Res., 104, 6843-6858, 1999.
    • Fu, Z. F., Lee, L. C., and Huba, J. D.: A quasi-local theory of the E×B instability in the ionosphere, J. Geophys. Res., 91, 3263- 3269, 1986.
    • Guzdar, P. N., Satyanarayana, P., Huba, J. D., and Ossakow, S. L.: Influence of velocity shear on Rayleigh-Taylor instability, Geophys. Res. Lett., 9, 547-550, 1983.
    • Haerendel, G. and Eccles, J. V.: The role of the equatorial electrojet in the evening ionosphere, J. Geophys. Res., 97, 1181-1192, 1992.
    • Haerendel, G., Eccles, J. V., and Cakir, S.: Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow, J. Geophys. Res., 97, 1209-1223, 1992.
    • Hassam, A. B.: Nonlinear stabilization of the Rayleigh-Taylor instability by external velocity shear, Phys. Fluids, 4, 485-487, 1992.
    • Heelis, R. A., Kendall, P. C., Moffet, R. J., Windle, D., and Rishbeth, H.: Electric coupling of the E and F regions and its effect of the F region drifts and winds, Planet. Space Sci., 22, 743-756, 1974.
    • Huba, J. D. and Lee, L. C.: Short wavelength stabilization of the gradient drift instability due to velocity shear, Geophys. Res. Lett., 10, 357-360, 1983.
    • Hysell, D. L. and Kudeki, E.: Collisional shear instability in the eqautorial F region ionosphere, J. Geophys. Res., 109(A11 301), 2004.
    • Hysell, D. L., Chun, J., and Chau, J. L.: Bottom-type scattering layers and equatorial spread F , Ann. Geophys., 22, 4061-4069, 2004, SRef-ID: 1432-0576/ag/2004-22-4061.
    • Kelley, M. C., Larsen, M. F., and La Hoz, C.: Gravity wave interaction of equatorial spread F : A case study, J. Geophys. Res., 86, 9087-9100, 1981.
    • Keskinen, M. J., Mitchell, H. G., Fedder, J. A., Satyanarayana, P., Zalesak, S. T., and Huba, J. D.: Nonlinear evolution of the Kelvin-Helmholtz instability in the high-latitude ionosphere, J. Geophys. Res., 93, 137-152, 1988.
    • Kudeki, E. and Bhattacharyya, S.: Post-sunset vortex in equatorial F -region plasma drifts and implications for bottomside spreadF , J. Geophys. Res., 104, 28 163-28 170, 1999.
    • Kudeki, E. and Su¨ru¨cu¨, F.: Radar interferometric imaging of fieldaligned plasma irregularities in the equatorial electrojet, Geophys. Res. Lett., 18, 41-44, 1991.
    • Kudeki, E., Fejer, B. G., Farley, D. T., and Ierkic, H. M.: Interferometer studies of equatorial F region irregularities and drifts, Geophys. Res. Lett., 8, 377-380, 1981.
    • Kudeki, E., Bhattacharyya, S., and Woodman, R. F.: A new approach in incoherent scatter F region E x B drift measurements at Jicamarca, J. Geophys. Res., 104, 28 145-28 162, 1999.
    • Larsen, M. F. and Odom, C. D.: Observations of altitudinal and latitudinal E-region neutral wind gradients near sunset at the magnetic equator, Geophys. Res. Lett., 24, 1711-1714, 1997.
    • Maruyama, T., Nozaki, K., Yamamoto, M., and Fukao, S.: Ionospheric height changes at two closely separated equatorial stations and implications in spread F onsets, J. Atmos. Sol. Terr. Phys., 64, 1557-1563, 2002.
    • Richmond, A. D.: Equatorial electrojet, I, Development of a model including winds and instabilities, J. Atmos. Terr. Phys., 35, 1083-1103, 1973.
    • Ronchi, C., Similon, P. L., and Sudan, R. N.: A nonlocal linear theory of the gradient drift instability in the equatorial electrojet, J. Geophys. Res., 94, 1317-1326, 1989.
    • Satyanarayana, P., Guzdar, P. N., Huba, J. D., and Ossakow, S. L.: Rayleigh-Taylor instability in the presence of a stratified shear layer, J. Geophys. Res., 89, 2945-2954, 1984.
    • Sekar, R. and Kelley, M. C.: On the combined effects of vertical shear and zonal electric field patterns on nonlinear equatorial spread F evolution, J. Geophys. Res., 103, 20,735-20,748, 1998.
    • Stenning, R. J.: A two-layer ionospheric dynamo circulation, J. Geophys. Res., 86, 3543-3550, 1981.
    • Takeda, M. and Maeda, H.: F region dynamo in the evening - Interpretation of equatorial 1D anomaly found by MAGSAT, J. Atmos. Sol. Terr. Phys., 45, 401-408, 1983.
    • Tsunoda, R. T., Livingston, R. C., and Rino, C. L.: Evidence of a velocity shear in bulk plasma motion associated with the postsunset rise of the equatorial F layer, Geophys. Res. Lett., 8, 807- 810, 1981.
    • Vadas, S. L. and Fritts, D. C.: Thermospheric response to gravity waves arising from mesoscale convective complexes, J. Atmos. Sol. Terr. Phys., 66, 781-804, 2004.
    • Woodman, R. F.: Vertical drift velocities and east-west electric fields at the magnetic equator, J. Geophys. Res., 75, 6249-6259, 1970.
    • Woodman, R. F.: Coherent radar imaging: Signal processing and statistical properties, Radio Sci., 32, 2373-2392, 1997.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article