Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Delorme , Pauline; Voller , Vaughan; Paola , Chris; Devauchelle , Olivier; Lajeunesse , Éric; BARRIER , Laurie; Métivier , François (2017)
Publisher: European Geosciences Union
Languages: English
Types: Article
Subjects: [ SDU.STU.GM ] Sciences of the Universe [physics]/Earth Sciences/Geomorphology
International audience; Using laboratory experiments, we investigate the growth of an alluvial fan fed with two distinct granular materials. Throughout the growth of the fan, its surface maintains a radial segregation, with the less mobile sediment concentrated near the apex. Scanning the fan surface with a laser, we find that the transition between the proximal and distal deposits coincides with a distinct slope break. A radial cross section reveals that the stratigraphy records the signal of this segregation. To interpret these observations, we conceptualize the fan as a radially symmetric structure that maintains its geometry as it grows. When combined with slope measurements, this model proves consistent with the sediment mass balance and successfully predicts the slope of the proximal–distal transition as preserved in the fan stratigraphy. While the threshold-channel theory provides an order-of-magnitude estimate of the fan slopes, driven by the relatively high sediment discharge in our experimental system, the actual observed slopes are 3–5 times higher than those predicted by this theory.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andreotti, B., Forterre, Y., and Pouliquen, O.: Les milieux granulaires, Entre fluide et solide, EDP Sciences, Collection Savoirs Actuels, Les Ulis, France, 2012.
    • Ashworth, P. J., Best, J. L., and Jones, M.: Relationship between sediment supply and avulsion frequency in braided rivers, Geology, 32, 21-24, 2004.
    • Blair, T. C.: Sedimentary processes, vertical stratification sequences, and geomorphology of the Roaring River alluvial fan, Rocky Mountain National Park, Colorado, J. Sediment. Res., 57, 1-18, 1987.
    • Blair, T. C. and McPherson, J. G.: Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages, J. Sediment. Res., 64, 450-489, 1994.
    • Blair, T. C. and McPherson, J. G.: Processes and forms of alluvial fans, in: Geomorphology of Desert Environments, Springer, Dordrech, the Netherlands, 413-467, 2009.
    • Blissenbach, E.: Relation of surface angle distribution to particle size distribution on alluvial fans, J. Sediment. Res., 22, 25-28, 1952.
    • Bryant, M., Falk, P., and Paola, C.: Experimental study of avulsion frequency and rate of deposition, Geology, 23, 365-368, 1995.
    • Bull, W. B.: Geomorphology of segmented alluvial fans in western Fresno County, California, US Government Printing Office, Washington, USA, 1964.
    • Bull, W. B.: The alluvial-fan environment, Prog. Phys. Geog., 1, 222-270, 1977.
    • Charreau, J., Gumiaux, C., Avouac, J.-P., Augier, R., Chen, Y., Barrier, L., Gilder, S., Dominguez, S., Charles, N., and Wang, Q.: The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan: Climatic and tectonic implications, Earth Planet. Sci. Lett., 287, 298-310, 2009.
    • Chow, V. T.: Open channel hydraulics, Civil Engineering Series, McGraw-Hill International editions, Singapore, 1959.
    • Clarke, L., Quine, T. A., and Nicholas, A.: An experimental investigation of autogenic behaviour during alluvial fan evolution, Geomorphology, 115, 278-285, 2010.
    • Clarke, L. E.: Experimental alluvial fans: Advances in understanding of fan dynamics and processes, Geomorphology, 244, 135- 145, 2015.
    • Clevis, Q., de Boer, P., and Wachter, M.: Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy, Sediment. Geol., 163, 85-110, 2003.
    • de Haas, T., Ventra, D., Carbonneau, P. E., and Kleinhans, M. G.: Debris-flow dominance of alluvial fans masked by runoff reworking and weathering, Geomorphology, 217, 165-181, 2014.
    • Devauchelle, O., Petroff, A., Lobkovsky, A., and Rothman, D. H.: Longitudinal profile of channels cut by springs, J. Fluid Mech., 667, 38-47, 2011.
    • Drew, F.: Alluvial and lacustrine deposits and glacial records of the Upper-Indus Basin, Q. J. Geol. Soc., 29, 441-471, 1873.
    • Dubille, M. and Lavé, J.: Rapid grain size coarsening at sandstone/conglomerate transition: similar expression in Himalayan modern rivers and Pliocene molasse deposits, Basin Res., 27, 26- 42, 2015.
    • Einstein, H. A.: The bed-load function for sediment transportation in open channel flows, 1026, US Department of Agriculture, Washington, USA, 1950.
    • Field, J.: Channel avulsion on alluvial fans in southern Arizona, Geomorphology, 37, 93-104, 2001.
    • Gaurav, K., Métivier, F., Devauchelle, O., Sinha, R., Chauvet, H., Houssais, M., and Bouquerel, H.: Morphology of the Kosi megafan channels, Earth Surf. Dynam., 3, 321-331, doi:10.5194/esurf-3-321-2015, 2015.
    • Glover, R. E. and Florey, Q.: Stable channel profiles, US Department of the Interior, Bureau of Reclamation, Hydr. Lab. Report, Denver, Colorado, USA, 1951.
    • Guerit, L., Métivier, F., Devauchelle, O., Lajeunesse, E., and Barrier, L.: Laboratory alluvial fans in one dimension, Phys. Rev. E, 90, 022203, doi:10.1103/PhysRevE.90.022203, 2014.
    • Guerit, L., Barrier, L., Jolivet, M., Fu, B., and Métivier, F.: Denudation intensity and control in the Chinese Tian Shan: new constraints from mass balance on catchment-alluvial fan systems, Earth Surf. Proc. Land., 41, 1088-1106, 2016.
    • Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L.: Large distributive fluvial systems: characteristics, distribution, and controls on development, J. Sediment. Res., 80, 167-183, 2010.
    • Harvey, A. M., Mather, A. E., and Stokes, M.: Alluvial fans: geomorphology, sedimentology, dynamics - introduction. A review of alluvial-fan research, Geological Society, London, Special Publications, 251, 1-7, 2005.
    • Henderson, F. M.: Stability of alluvial channels, J. Hydr. Div., 87, 109-138, 1961.
    • Hinderer, M.: From gullies to mountain belts: a review of sediment budgets at various scales, Sediment. Geol., 280, 21-59, 2012.
    • Houssais, M. and Lajeunesse, E.: Bedload transport of a bimodal sediment bed, J. Geophys. Res.-Earth, 117, F04015, doi:10.1029/2012JF002490, 2012.
    • Jayko, A.: Late Quaternary denudation, Death and Panamint valleys, eastern California, Earth-Sci. Rev., 73, 271-289, 2005.
    • Jolivet, M., Barrier, L., Dominguez, S., Guerit, L., Heilbronn, G., and Fu, B.: Unbalanced sediment budgets in the catchmentalluvial fan system of the Kuitun River (northern Tian Shan, China): Implications for mass-balance estimates, denudation and sedimentation rates in orogenic systems, Geomorphology, 214, 168-182, 2014.
    • Kiefer, E., Dorr, M. J., Ibbeken, H., and Gotze, H.-J.: Gravity-based mass balance of an alluvial fan giant: the Arcas Fan, Pampa del Tamarugal, Northern Chile, Andean Geol., 24, 165-185, 1997.
    • Le Hooke, R. B. and Rohrer, W. L.: Geometry of alluvial fans: Effect of discharge and sediment size, Earth Surf. Processes, 4, 147-166, 1979.
    • Makse, H. A., Cizeau, P., and Stanley, H. E.: Possible stratification mechanism in granular mixtures, Phys. Rev. Lett., 78, 3298- 3301, 1997a.
    • Makse, H. A., Havlin, S., King, P. R., and Stanley, H. E.: Spontaneous stratification in granular mixtures, Nature, 386, 379-382, 1997b.
    • Métivier, F., Lajeunesse, E., and Devauchelle, O.: Laboratory rivers: Lacey's law, threshold theory, and channel stability, Earth Surf. Dynam., 5, 187-198, doi:10.5194/esurf-5-187-2017, 2017.
    • Miller, K. L., Reitz, M. D., and Jerolmack, D. J.: Generalized sorting profile of alluvial fans, Geophys. Res. Lett., 41, 7191-7199, 2014.
    • Moody, L. F.: Friction factors for pipe flow, Trans. Asme, 66, 671- 684, 1944.
    • Muto, T. and Steel, R. J.: Autogenic response of fluvial deltas to steady sea-level fall: Implications from flume-tank experiments, Geology, 32, 401-404, 2004.
    • Paola, C., Heller, P. L., and Angevine, C. L.: The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory, Basin Res., 4, 73-90, 1992a.
    • Paola, C., Parker, G., Seal, R., Sinha, S. K., Southard, J. B., and Wilcock, P. R.: Downstream fining by selective deposition in a laboratory flume, Science, 258, 1757-1757, 1992b.
    • Paola, C., Straub, K., Mohrig, D., and Reinhardt, L.: The “unreasonable effectiveness” of stratigraphic and geomorphic experiments, Earth-Sci. Rev., 97, 1-43, 2009.
    • Parker, G.: Progress in the modeling of alluvial fans, J. Hydraul. Res., 37, 805-825, 1999.
    • Parker, G., Paola, C., Whipple, K. X., and Mohrig, D.: Alluvial fans formed by channelized fluvial and sheet flow. I: Theory, J. Hydraul. Eng., 124, 985-995, 1998a.
    • Parker, G., Paola, C., Whipple, K. X., Mohrig, D., Toro-Escobar, C. M., Halverson, M., and Skoglund, T. W.: Alluvial fans formed by channelized fluvial and sheet flow. II: Application, J. Hydraul. Eng., 124, 996-1004, 1998b.
    • Powell, E. J., Kim, W., and Muto, T.: Varying discharge controls on timescales of autogenic storage and release processes in fluviodeltaic environments: Tank experiments, J. Geophys. Res.-Earth, 117, F02011, doi:10.1029/2011JF002097, 2012.
    • Rachocki, A. and Church, M. A.: Alluvial fans: a field approach, John Wiley & Sons, Chichester, UK, 1990.
    • Reitz, M. D. and Jerolmack, D. J.: Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth, J. Geophys. Res.-Earth, 117, F02021, doi:10.1029/2011JF002261, 2012.
    • Reitz, M. D., Jerolmack, D. J., Lajeunesse, E., Limare, A., Devauchelle, O., and Métivier, F.: Diffusive evolution of experimental braided rivers, Phys. Rev. E, 89, 052809, doi:10.1103/PhysRevE.89.052809, 2014.
    • Rice, S.: The nature and controls on downstream fining within sedimentary links, J. Sediment. Res., 69, 32-39, 1999.
    • Schumm, S. A., Mosley, M. P., and Weaver, W.: Experimental fluvial geomorphology, John Wiley and Sons Inc., New York, NY, USA, 1987.
    • Seizilles, G., Devauchelle, O., Lajeunesse, E., and Métivier, F.: Width of laminar laboratory rivers, Phys. Rev. E, 87, 052204, doi:10.1103/PhysRevE.87.052204, 2013.
    • Seizilles, G., Lajeunesse, E., Devauchelle, O., and Bak, M.: Crossstream diffusion in bedload transport, Phys. Fluids, 26, 013302, doi:10.1063/1.4861001, 2014.
    • Shields, A.: Anwendung der Ahnlichkeits Mechanik und der Turbulenz-forschung auf die Geschiebebewegung, Preussische Versuchsanstalt für Wasserbau und Schiffbau, 26, 524-526, 1936.
    • Sinha, R.: The Great avulsion of Kosi on 18 August 2008, Current Science, 97, 429-433, 2009.
    • Slingerland, R. and Smith, N. D.: River avulsions and their deposits, Annu. Rev. Earth Planet. Sci., 32, 257-285, 2004.
    • Smith, G. H. S. and Ferguson, R. I.: The gravel-sand transition: flume study of channel response to reduced slope, Geomorphology, 16, 147-159, 1996.
    • Stock, J. D., Schmidt, K. M., and Miller, D. M.: Controls on alluvial fan long-profiles, Geol. Soc. Am. Bull., 120, 619-640, 2008.
    • Van Dijk, M., Postma, G., and Kleinhans, M. G.: Autocyclic behaviour of fan deltas: an analogue experimental study, Sedimentology, 56, 1569-1589, 2009.
    • Viparelli, E., Solari, L., and Hill, K.: Downstream lightening and upward heavying: Experiments with sediments differing in density, Sedimentology, 62, 1384-1407, 2015.
    • Weissmann, G. S., Mount, J. F., and Fogg, G. E.: Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, USA, J. Sediment. Res., 72, 240-251, 2002.
    • Whipple, K. X., Parker, G., Paola, C., and Mohrig, D.: Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study, J. Geol., 106, 677-694, 1998.
    • Whittaker, A. C., Duller, R. A., Springett, J., Smithells, R. A., Whitchurch, A. L., and Allen, P. A.: Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply, Geol. Soc. Am. Bull., 123, 1363- 1382, 2011.
    • Wilcock, P. R. and Crowe, J. C.: Surface-based transport model for mixed-size sediment, J. Hydraul. Eng., 129, 120-128, 2003.
    • Williams, R. M., Zimbelman, J. R., and Johnston, A. K.: Aspects of alluvial fan shape indicative of formation process: A case study in southwestern California with application to Mojave Crater fans on Mars, Geophys. Res. Lett., 33, L10201, doi:10.1029/2005GL025618, 2006.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article