LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, L.; Zhang, L.; Tao, D.; Huang, X. (2012)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology
In remote sensing image interpretation, it is important to combine multiple features of a certain pixel in both spatial and spectral domains to improve the classification accuracy, such as spectral signature, morphological property, and shape feature. Therefore, it is essential to consider the complementary property of different features and combine them in order to obtain an accurate classification rate. In this paper, we introduce a multi-feature dimension reduction algorithm under a probabilistic framework, modified stochastic neighbor embedding (MSNE). For each feature, a probability distribution is constructed based on SNE, and then we alternatively solve SNE and learn the optimal combination coefficients for different features in optimization. Compared with conventional dimension reduction strategies, the suggested algorithm can considers spectral, morphological and shape features of a pixel to achieve a physically meaningful low-dimensional feature representation by automatically learn a combination coefficient for each feature adapted to its contribution to subsequent classification. In experimental section, classification results using hyperspectral remote sensing image (HSI) show that this modified stochastic neighbor embedding can effectively improve classification performance.
  • No references.
  • No related research data.
  • No similar publications.