LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lacava, T.; Greco, M.; Leo, E. V.; Martino, G.; Pergola, N.; Romano, F.; Sannazzaro, F.; Tramutoli, V. (2005)
Languages: English
Types: Article
Subjects:
In the last years satellite remote sensing applications in hydrology have considerably progressed. A new multi-temporal satellite data-analysis approach has been recently suggested in order to estimate space-time changes of geophysical parameters possibly related to the increase of environmental and hydro-geological hazards. Such an approach has been already used both for flooded area mapping (using AVHRR data) and for soil wetness index estimation (using AMSU data).

In this work, a preliminary sensitivity analysis of the proposed Soil Wetness Variation Index (SWVI) is made in the case of low intensity meteorological events by the comparison with hydrological (precipitation) data. This analysis, as a first step of a more complex work in progress, is targeted to a first evaluation of the reliability of the SWVI in describing soil response to precipitations of different duration and intensity.

Share - Bookmark

Cite this article

Collected from