LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
D. A. Fornara; E.-A. Wasson; P. Christie; C. J. Watson (2016)
Publisher: Copernicus Publications
Journal: Biogeosciences
Languages: English
Types: Article
Subjects: Ecology, QH540-549.5, QE1-996.5, QH501-531, Geology, Life
Sustainable grassland intensification aims to increase plant yields while maintaining the ability of soil to act as a sink rather than sources of atmospheric CO2. High biomass yields from managed grasslands, however, can be only maintained through long-term nutrient fertilization, which can significantly affect soil carbon (C) storage and cycling. Key questions remain about (1) how long-term inorganic vs. organic fertilization influences soil C stocks, and (2) how soil C gains (or losses) contribute to the long-term C balance of managed grasslands. Using 43 years of data from a permanent grassland experiment, we show that soils not only act as significant C sinks but have not yet reached C saturation. Even unfertilized control soils showed C sequestration rates of 0.35 Mg C ha−1 yr−1 (i.e. 35 g C m−2 yr−1; 0–15 cm depth) between 1970 and 2013. High application rates of liquid manure (i.e. cattle slurry) further increased soil C sequestration to 0.86 Mg C ha−1 yr−1 (i.e. 86 g C m−2 yr−1) and a key cause of this C accrual was greater C inputs from cattle slurry. However, average coefficients of slurry-C retention in soils suggest that 85 % of C added yearly through liquid manure is lost possibly via CO2 fluxes and organic C leaching. Inorganically fertilized soils (i.e. NPK) had the lowest C-gain efficiency (i.e. unit of C gained per unit of N added) and lowest C sequestration (similar to control soils). Soils receiving cattle slurry showed higher C-gain and N-retention efficiencies compared to soils receiving NPK or pig slurry. We estimate that net rates of CO2-sequestration in the top 15 cm of the soil can offset 9–25 % of GHG (greenhouse gas) emissions from intensive management. However, because of multiple GHG sources associated with livestock farming, the net C balance of these grasslands remains positive (9–12 Mg CO2-equivalent ha−1 yr−1), thus contributing to climate change. Further C-gain efficiencies (e.g. reduced enteric fermentation and use of feed concentrates, better nutrient management) are required to make grassland intensification more sustainable.

Share - Bookmark

Cite this article