LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
G. Dutta; M. C. Ajay Kumar; P. Vinay Kumar; P. V. Rao; B. Bapiraju; H. Aleem Basha (2009)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Physics::Fluid Dynamics, Physics::Space Physics
High resolution (150 m) wind measurements from 13–17 July 2004 by Mesosphere-Stratosphere-Troposphere (MST) radar and 15–16 July 2004 by Lower Atmospheric Wind Profiler (LAWP) have been used to study the time variation of turbulence intensity. Layers of higher turbulence are observed in the lower stratosphere on 15–16 July which give rise to mixing in the region. Enhancement in short-period gravity wave activity and turbulent layers are observed after 22:00 LT which could be due to a dry convection event that occurred at that time. The breakdown of the convectively generated high frequency waves seems to have given rise to the turbulence layers. Wind shear is found to be high above the easterly jet, but very poor correlation is observed between square of wind shear and turbulence parameters in the region. The heights of the turbulent layers in the lower stratosphere do not correlate with levels of minimum Richardson number. A monochromatic inertia gravity wave could be identified during 13–17 July 2004. A non-linear interaction between the waves of different scales as proposed by Hines (1992) might also be responsible for the breakdown and generation of turbulence layers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander, M. J., Beres, J. H., and Pfister, L.: Tropical stratospheric gravity wave activity and relationship to clouds, J. Geophys. Res., 105, 22299-22309, 2000.
    • Balsley, B. B., Ecklund, W. L., and Fritts, D. C.: VHF echoes from the high-latitude mesosphere and lower thermosphere: observations and interpretation, J. Atmos. Sci., 40, 2451-2466, 1983.
    • Cho, J. Y. N.: Inertia-gravity wave parameter estimation from crossspectral analysis, J. Geophys. Res., 100, 18727-18737, 1995.
    • Dhaka, S. K., Yamamoto, M. K., Shibagaki, Y., Hashiguchi, H., and Yamamoto, M.: Convection-induced gravity waves observed by the Equatorial Atmosphere Radar (0.20◦ S, 100.32◦ E) in Indonesia, Geophys. Res. Lett., 32, L14820, doi:10.1029/2005GL022907, 2005.
    • Dutta, G., Bapiraju, B., Balasubrahmanyam, P., and Aleem Basha, H.: VHF radar observations of gravity waves at a low latitude, Ann. Geophys., 17, 1012-1019, 1999, http://www.ann-geophys.net/17/1012/1999/.
    • Dutta, G., Tsuda, T., Kumar, P. V., Kumar, M. C. A., Alexander, S. P., and Kozu, T.: Seasonal variation of short-period (<2 h) gravity wave activity over Gadanki, India (13.5◦ N, 79.2◦ E), J. Geophys. Res., 113, D14103, doi:10.1029/2007JD009178, 2008.
    • Eckermann, S. D.: Influence of wave propagation on the Dopplerspreading of atmospheric gravity waves, J. Atmos. Sci., 54, 2554-2573, 1997.
    • Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1/1003, doi:10/1029/2001RG000106, 2003.
    • Gage, K. S.: Radar observations of the free atmosphere Structure and dynamics. Radar in Meteorology, American Meteorological Society, Chapter 28a, 1990.
    • Ghosh, A. K., Siva Kumar, V., Kishore Kumar, K., and Jain, A. R.: VHF radar observation of atmospheric winds, associated shears and Cn2 at a tropical location: interdependence and seasonal pattern, Ann. Geophys., 19, 965-973, 2001, http://www.ann-geophys.net/19/965/2001/.
    • Hines, C. O.: Mesospheric VHF echoing layers; an interpretation of certain observations in terms of wave scavenging, J. Atmos. Terr. Phys., 54, 1043-1049, 1992.
    • Hines, C. O.: Some consequences of gravity-wave critical layers in the upper atmosphere, J. Atmos. Terr. Phys., 30, 837-843, 1968.
    • Hines, C. O.: The saturation of gravity waves in the middle atmosphere III; formation of the turbopause and of turbulent layers beneath it, J. Atmos. Sci., 48, 1380-1386, 1991.
    • Hocking, W. K., Lawry, K., and Neudegg, D.: Radar measurements of atmospheric turbulence intensities by Cn2 and spectral width method, Middle Atmospheric program Hand Book, 27, 443-446, SCOSTEP Secretariat Univ. Illinois, 1989.
    • Hocking, W. K.: Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques; A review, Radio Sci., 20, 1403-1422, 1985.
    • Karoly, D. J., Roff, G. L., and Reeder, M. J.: Gravity wave activity associated with tropical convection detected in TOGA COARE sounding data, Geophys. Res. Lett., 23, 261-264, 1996.
    • Lane, T. P., Reeder, M. J., and Clark, T. L.: Numerical modeling of gravity wave generation by deep tropical convection, J. Atmos. Sci., 58, 1249-1274, 2001.
    • Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707-9714, 1981.
    • McLandress, C., Alexander, M. J., and Wu, D. L.: Microwave LINK sounder observations of gravity waves in the stratosphere: A climatology and interpretation, J. Geophys. Res., 105, 11947- 11967, 2000.
    • Muraoka, Y., Sugiyama, T., Kawahira, K., Sato, T., Tsuda, T., Fukao, S., and Kato, S.: Cause of monochromatic inertia-gravity wave breaking observed by the MU radar, Geophys. Res. Lett., 15, 1349-1352, 1988.
    • Mahalov, A., Moustaoui, M., Nicolaenko, B., and Tse, K. L.: Computational studies of inertia-gravity waves radiated from upper Tropospheric jets, Theor. Comput. Fluid Dyn., 21, 399-422, doi:10.1007/s00162-007-0062-1, 2007.
    • Nastrom, G. D. and Tsuda, T.: Anisotropy of Doppler spectral parameters in the VHF radar observations at MU and White Sands, Radio Sci., 19, 883-888, 2001.
    • Niranjan Kumar, K. and Ramkumar, R. K.: Characteristics of inertia-gravity waves over Gadanki during the passage of a deep depression over the Bay of Bengal, Geophys. Res. Lett., 35, L13804, doi:10.1029/2008GL033937, 2008.
    • Pantley, K. C. and Lester, P. F.: Observations of severe turbulence near thunderstorm tops, J. Appl. Meteor., 29, 1171-1179, 1990.
    • Pavelin, E. G. and Whiteway, J.: Gravity wave interactions around the jet stream, Geophys. Res. Lett., 29(21), 2024, doi:10.1029/2002GL015783, 2002.
    • Rao, D. N., Kishore, P., Rao, T. N., Rao, S. V. B., Reddy, K. K., Yarraiah, M., and Hareesh, M.: Studies on refractivity structure constant, eddy dissipation rate, and momentum flux at a tropical latitude, Radio Sci., 32, 1375-1389, 1997.
    • Rao, D. N., Rao, T. N., Venkataratnam, M., Thulisiraman, S., Rao, S. V. B., Srinivasulu, P., and Rao, P. B.: Diurnal and seasonal variabilities of turbulent parameters observed with Indian mesosphere-stratosphere-troposphere radar, Radio Sci., 36(6), 1439-1457, 2001.
    • Rao, P. B., Jain, A. R., Kishore, P., Balamuralidhar, P., Damle, S. H., and Viswanthan, G.: Indian MST radar, 1, system description and sample vector wind measurements in ST mode, Radio Sci., 30, 1125-1138, 1995.
    • Reddy, K. K., Kozu, T., Ohno, Y., Nakamura, K.,Srinivasula, P., Anandan, V. K., Jain, A. R., Rao, P. B., Ranga Rao, R., Viswanthan, G., and Rao, D. N.: Lower atmosphericwind profiler at Gadanki, Tropical India: initial result, Meterologische Zeitschrift., 10, 457-466, 2001.
    • Ro¨ttger, J. and Liu, C. H.: Partial reflection and scattering of VHF radar signals from clear atmosphere, Geophys. Res. Lett., 5, 357- 360, 1978.
    • Ro¨ttger, J.: Structure and dynamics of the stratosphere and mesosphere revealed by VHF radar investigation, Pageoph, 118, 494- 527, 1980.
    • Sasi, M. N., Geetha Ramkumar., Deepa, V., and Krishna Murthy, B. V.: Inertia-gravity waves associated with the tropical easterly jet over the Indian subcontinent during the south west monsoon period, Geophys. Res. Lett., 27(19), 3201-3204, 2000.
    • Sato, K., Hashiguchi, H., and Fukao, S.: Gravity waves and turbulence associated with cumulus convection observed with the UHF/VHF clear-air Doppler radars, J. Geophys. Res., 100(D4), 7111-7119, 1995.
    • Shimzu, A. and Tsuda, T.: Characteristics of Kelvin waves and gravity waves observed with radiosondes over Indonesia, J. Geophys. Res., 102, 26159-26171, doi:10.1029/96JD03146, 1997.
    • Van Zandt, T. E., Green, J. L., Gage, K. S., and Clark, W. L.: Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the Sunset Radar with a new theoretical model, Radio Sci., 13, 819-829, 1978.
    • Vaughan, G., Howells, A., and Price, J. D.: Use of MST radars to probe the mesoscales structures of the tropopause, Tellus, 47A, 759-765, 1995.
    • Vincent, R. A. and Alexander, M. J..: Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability, J. Geophys. Res., 105, 17971-17982, 2000.
    • Walterscheid, R. L.: Propagation of small-scale gravity waves through large-scale internal wave fields: Eikonal effects at lowfrequency approximation critical levels, J. Geophys. Res., 105, 18027-18037, 2000.
    • Yamamoto, M., Tsuda, T., Kato, S., Sato, T., and Fukao, S.: A saturated inertia gravity wave in the mesosphere observed by the middle and upper atmosphere radar, J. Geophys. Res., 92, 11993-11999, 1987.
    • Yamamoto, M. K., Nishi, N., Horinouchi, T., Niwano, M., and Fukao, S.: Vertical wind observation in the tropical upper troposphere by VHF wind profiler: A case study, Radio Sci., 42, RS3005, doi:10.1029/2006RS003538, 2007.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article