Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schmidt, Amanda H.; Neilson, Thomas B.; Bierman, Paul R.; Rood, Dylan H.; Ouimet, William B.; Sosa Gonzalez, Veronica (2016)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: QE500-639.5, Dynamic and structural geology
In order to understand better if and where erosion rates calculated using in situ 10Be are affected by contemporary changes in land use and attendant deep regolith erosion, we calculated erosion rates using measurements of in situ 10Be in quartz from 52 samples of river sediment collected from three tributaries of the Mekong River (median basin area = 46.5 km2). Erosion rates range from 12 to 209 mm kyr−1 with an area-weighted mean of 117 ± 49 mm kyr−1 (1 standard deviation) and median of 74 mm kyr−1. We observed a decrease in the relative influence of human activity from our steepest and least altered watershed in the north to the most heavily altered landscapes in the south. In the areas of the landscape least disturbed by humans, erosion rates correlate best with measures of topographic steepness. In the most heavily altered landscapes, measures of modern land use correlate with 10Be-estimated erosion rates but topographic steepness parameters cease to correlate with erosion rates. We conclude that, in some small watersheds with high rates and intensity of agricultural land use that we sampled, tillage and resultant erosion has excavated deeply enough into the regolith to deliver subsurface sediment to streams and thus raise apparent in situ 10Be-derived erosion rates by as much as 2.5 times over background rates had the watersheds not been disturbed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andermann, C., Bonnet, S., and Gloaguen, R.: Evaluation of precipitation data sets along the Himalayan front, Geochem. Geophy. Geosy., 12, Q07023, doi:10.1029/2011GC003513, 2011.
    • Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174-195, doi:10.1016/j.quageo.2007.12.001, 2008.
    • Bierman, P. R. and Caffee, M.: Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa, Am. J. Sci., 301, 326-358, 2001.
    • Bierman, P. R. and Caffee, M.: Cosmogenic exposure and erosion history of Australian bedrock landforms, Geol. Soc. Am. Bull., 114, 787-803, 2002.
    • Bierman, P. R. and Steig, E.: Estimating rates of denudation and sediment transport using cosmogenic isotope abundances in sediment, Earth Surf. Proc. Land., 21, 125-139, 1996.
    • Binnie, S. A., Phillips, W. M., Summerfield, M. A., and Fifield, L. K.: Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range, Geology, 35, 743-746, 2007.
    • Braucher, R., Bourlès, D., Brown, E., Colin, F., Muller, J.-P., Braun, J.-J., Delaune, M., Minko, A. E., Lescouet, C., and Raisbeck, G.: Application of in situ-produced cosmogenic 10 Be and 26 Al to the study of lateritic soil development in tropical forest: theory and examples from Cameroon and Gabon, Chem. Geol., 170, 95- 111, 2000.
    • Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and Yiou, F.: Denudation rates determined from the accumulation of in situ-produced 10Be in the Luquillo experimental forest, Puerto Rico, Earth Planet. Sc. Lett., 129, 193-202, 1995.
    • Brown, E. T., Stallard, R. F., Larsen, M. C., Bourles, D. L., Raisbeck, G. M., and Yiou, F.: Determination of predevelopment denudation rates of an agricultural watershed (Cayaguas River, Puerto Rico) using in-situ-produced 10Be in river-borne quartz, Earth Planet. Sc. Lett., 160, 723-728, 1998.
    • Burchfiel, B. C. and Chen, Z.: Tectonics of the southeastern Tibetan Plateau and its adjacent foreland, Geol. Soc. Am. Mem., 210, 2012.
    • Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover mapping at 30 m resolution: A POKbased operational approach, ISPRS J. Photogramm., 103, 7-27, doi:10.1016/j.isprsjprs.2014.09.002, 2015.
    • Chmeleff, J., Blanckenburg, F. V., Kossert, K., and Jakob, D.: Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting, Nucl. Instrum. Meth. B, 268, 192- 199, 2009.
    • Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., and Tang, W.: Late Cenozoic uplift of southeastern Tibet, Geology, 33, 525-528, doi:10.1130/g21265.1, 2005.
    • Clark, M. K., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., and Tang, W.: Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau, J. Geophys. Res.-Earth, 111, F03002, doi:10.1029/2005JF000294, 2006.
    • Corbett, L. B., Bierman, P. R., and Rood, D. H.: An approach for optimizing in situ cosmogenic 10Be sample preparation, Quaternary Geology, 33, 24-34, 2016.
    • DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W. B.: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth Planet. Sc. Lett., 289, 134-144, 2010.
    • Fan, H., Hu, J., and He, D.: Trends in precipitation over the low latitude highlands of Yunnan, China, J. Geogr. Sci., 23, 1107- 1122, doi:10.1007/s11442-013-1066-y, 2013.
    • Flint, J. J.: Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res., 10, 969-973, doi:10.1029/WR010i005p00969, 1974.
    • Granger, D. E., Kirchner, J. W., and Finkel, R.: Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediments, J. Geol., 104, 249-257, 1996.
    • Harel, M.-A., Mudd, S., and Attal, M.: Global analysis of the stream power law parameters based on worldwide 10 Be denudation rates, Geomorphology, 268, 184-196, doi:10.1016/j.geomorph.2016.05.035, 2016.
    • Henck, A. C., Huntington, K. W., Stone, J. O., Montgomery, D. R., and Hallet, B.: Spatial controls on erosion in the Three Rivers Region, southeastern Tibet and southwestern China, Earth Planet. Sc. Lett., 303, 71-83, doi:10.1016/j.epsl.2010.12.038, 2011.
    • Hewawasam, T., von Blackenburg, F., Schaller, M., and Kubik, P.: Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides, Geology, 31, 597- 600, 2003.
    • Hooke, R. L.: Spatial distribution of human geomorphic activity in the United States: Comparison with rivers, Earth Surf. Proc. Land., 24, 687-692, 1999.
    • Hooke, R. L.: On the history of humans as geomorphic agents, Geology, 28, 843-846, 2000.
    • Jull, A. J. T., Scott, E. M., and Bierman, P.: The CRONUSEarth inter-comparison for cosmogenic isotope analysis, Quat. Geochronol., 26, 3-10, doi:10.1016/j.quageo.2013.09.003, 2015.
    • Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56, 3583-3587, 1992.
    • Liu-Zeng, J., Tapponnier, P., Gaudemer, Y., and Ding, L.: Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution, J. Geophys. Res.-Earth, 113, F04018, doi:10.1029/2007JF000897, 2008.
    • Miller, S. R., Sak, P. B., Kirby, E., and Bierman, P. R.: Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates, Earth Planet. Sc. Lett., 369-370, 1-12, doi:10.1016/j.epsl.2013.04.007, 2013.
    • Ministry of Geology and Mineral Resources: Geological Map of Nujiang, Lancang, and Jinsha Rivers Area, Geological Publishing House, China Geological Map Printing House, Beiling, China, 1986.
    • Montgomery, D. R. and Brandon, M. T.: Topographic controls on erosion rates in tectonically active mountain ranges, Earth Planet. Sc. Lett., 201, 481-489, 2002.
    • NASA LP-DAAC: ASTER GDEM, LP-DAAC, available at: http: //gdex.cr.usgs.gov/gdex/ (last access: 28 October 2016), 2012.
    • Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and McAninch, J.: Absolute calibration of 10Be AMS standards, Nucl. Instrum. Meth. B, 258, 403-413, 2007.
    • NRC: New Research Opportunities in the Earth Sciences, National Academy Press, Washington, DC, USA, 2012.
    • Ouimet, W. B., Whipple, K. X., and Granger, D. E.: Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges, Geology, 37, 579-582, doi:10.1130/G30013A.1, 2009.
    • Portenga, E. W. and Bierman, P. R.: Understanding Earth's eroding surface with 10Be, GSA Today, 21, 4-10, doi:10.1130/G111A.1, 2011.
    • Reusser, L. J., Bierman, P., and Rood, D.: Quantifying human impacts on rates of erosion and sediment transport at a landscape scale, Geology, 43, 171-174, 2015.
    • Riebe, C. S., Kirchner, J. W., Granger, D. E., and Finkel, R. C.: Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26Al and 10Be in alluvial sediment, Geology, 28, 803-806, 2000.
    • Schaller, M., von Blanckenburg, F., Veit, H., and Kubik, P.: Influence of periglacial cover beds on in situ-produced cosmogenic 10 Be in soil sections, Geomorphology, 49, 255-267, 2003.
    • Shapiro, J.: Mao's war against nature: Politics and the environment in revolutionary China, Cambridge University Press, Cambridge, UK, 2001.
    • Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and Turkelboom, F.: Erosion processes in steep terrain - Truths, myths, and uncertainties related to forest management in Southeast Asia, Forest Ecol. Manag., 224, 199-225, doi:10.1016/j.foreco.2005.12.019, 2006.
    • Small, E. E., Anderson, R. S., and Hancock, G. S.: Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope, Geomorphology, 27, 131-150, 1999.
    • Trac, C. J., Harrell, S., Hinckley, T. M., and Henck, A. C.: Reforestation programs in Southwest China: Reported success, observed failures, and the reasons why, J. Mt. Sci., 4, 275-292, doi:10.1007/s11629-007-0275-1, 2007.
    • Trimble, S. W.: The fallacy of stream equilibrium in contemporary denudation studies, Am. J. Sci., 277, 876-887, 1977.
    • Urgenson, L. S., Hagmann, R. K., Henck, A. C., Harrell, S., Hinckley, T. M., Shepler, S. J., Grub, B. L., and Chi, P. M.: Social-ecological resilience of a Nuosu community-linked watershed, southwest Sichuan, China, Ecol. Soc., 15, 2, http://www. ecologyandsociety.org/vol15/iss4/art2/, 2010.
    • Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Poesen, J., Deckers, J., and Kubik, P.: Restoring dense vegetation can slow mountain erosion to near natural benchmark levels, Geology, 35, 303-306, 2007.
    • Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Campforts, B., and Kubik, P. W.: Transient river response, captured by channel steepness and its concavity, Geomorphology, 228, 234- 243, doi:10.1016/j.geomorph.2014.09.013, 2015.
    • van Breemen, N. and Buurman, P.: Soil Physical Processes, Soil Formation, Kluwer Academic Publishers, Dordrecht, the Netherlands, 15-39, 2002.
    • von Blanckenburg, F., Hewawasam, T., and Kubik, P. W.: Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka, J. Geophys.l Res.-Earth, 109, F03008, doi:10.1029/2003JF000049, 2004.
    • von Blanckenburg, F.: The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sc. Lett., 237, 462-479, 2005.
    • West, A. J., Arnold, M., AumaÎtre, G., Bourlès, D. L., Keddadouche, K., Bickle, M., and Ojha, T.: High natural erosion rates are the backdrop for present-day soil erosion in the agricultural Middle Hills of Nepal, Earth Surf. Dynam., 3, 363-387, 10.5194/esurf-3-363-2015, 2015.
    • Wielemaker, W.: Soil formation by termites: a study in the Kisii area, Kenya, 1984.
    • Willenbring, J. K., Gasparini, N. M., Crosby, B. T., and Brocard, G.: What does a mean mean? The temporal evolution of detrital cosmogenic denudation rates in a transient landscape, Geology, 41, 1215-1218, 2013.
    • Wittmann, H. and von Blanckenburg, F.: The geological significance of cosmogenic nuclides in large lowland river basins, Earth-Sci. Rev., 159, 118-141, 2016.
    • Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topography: Procedures, promise and pitfalls, Tectonics, climate, and landscape evolution, Geol. Soc. Am. S., 398, 55-74, 2006.
    • Xu, S., Dougans, A. B., Freeman, S. P. H. T., Schnabel, C., and Wilcken, K. M.: Improved 10Be and 26Al-AMS with a 5MV spectrometer, Nucl. Instrum. Meth. B., 268, 736-738, doi:10.1016/j.nimb.2009.10.018, 2010.
    • Xu, S., Freeman, S. P. H. T., Rood, D. H., and Shanks, R. P.: Decadal 10Be, 26Al and 36Cl QA measurements on the SUERC 5 MV accelerator mass spectrometer, Nucl. Instrum. Meth. B., 361, 39- 42, doi:10.1016/j.nimb.2015.03.064, 2015.
    • Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges, B. Am. Meteorol. Soc., 93, 1401-1415, doi:10.1175/BAMS-D-11-00122.1, 2012.
    • Zhang, X. B.: Status and causes of sediment change in the Upper Yangtze River and sediment reduction measures - comparison of Jialing River with Jinsha River, Soil Water Conservation in China, 2, 22-24, 1999 (in Chinese).
    • Zhang, X. B. and Wen, A. B.: Variations of sediment in upper stream of Yangtze River and its tributary, Shuili Xuebao, 4, 56-59, 2002 (in Chinese).
    • Zhang, X. B. and Wen, A. B.: Current changes of sediment yields in the upper Yangtze River and its two biggest tributaries, China, Global Planet. Change, 41, 221-227, 2004.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: Dec...
  • NSF | Collaborative Research: Dec...
  • NSF | Collaborative Research: Dec...

Cite this article