LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Xu, Sudan; Vosselman, G.; Oude Elberink, S.J. (2015)
Publisher: MDPI AG
Languages: English
Types: Article
Subjects: TA1501-1820, change, airborne laser scanning, ALS, Engineering (General). Civil engineering (General), Technology, classification, building, TA1-2040, Q, T, Applied optics. Photonics, Science, change detection
The difficulty associated with the Lidar data change detection method is lack of data, which is mainly caused by occlusion or pulse absorption by the surface material, e.g., water. To address this challenge, we present a new strategy for detecting buildings that are “changed”, “unchanged”, or “unknown”, and quantifying the changes. The designation “unknown” is applied to locations where, due to lack of data in at least one of the epochs, it is not possible to reliably detect changes in the structure. The process starts with classified data sets in which buildings are extracted. Next, a point-to-plane surface difference map is generated by merging and comparing the two data sets. Context rules are applied to the difference map to distinguish between “changed”, “unchanged”, and “unknown”. Rules are defined to solve problems caused by the lack of data. Further, points labelled as “changed” are re-classified into changes to roofs, walls, dormers, cars, constructions above the roof line, and undefined objects. Next, all the classified changes are organized as changed building objects, and the geometric indices are calculated from their 3D minimum bounding boxes. Performance analysis showed that 80%–90% of real changes are found, of which approximately 50% are considered relevant.
  • No references.
  • No related research data.
  • No similar publications.