LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Etchanchu, Jordi; Rivalland, Vincent; Gascoin, Simon; Cros, Jérôme; Brut, Aurore; Boulet, Gilles (2017)
Languages: English
Types: Article
Subjects:
Agricultural landscapes often include a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes as simulated by land surface and distributed hydrological models. Sentinel-2 mission satellite remote sensing products allow for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively) that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy flux via the ISBA-SURFEX land surface model. The study area is a 24 km by 24 km agricultural zone in southwestern France. An initial reference simulation was conducted from 2006–2010 using the ECOCLIMAP-II database. This global numerical land ecosystem database was created at a 1 km resolution and includes an ecosystem classification with a consistent set of land surface parameters required for the model, such as the Leaf Area Index (LAI) and albedo measures. The LAI of ECOCLIMAP is climatologic and derived from a 2000–2005 analysis of MODIS satellite products. This low resolution induces that several vegetation covers can be mixed in a model cell. The climatic construction of LAI dynamics also suggests that there is no interannual variability in the vegetation cycle. A second simulation was performed by forcing the same model with annual land cover maps and monthly LAI values derived from a series of 105 8 m-resolution Formosat-2 images for the same period. Both simulations were conducted at the parcel scale, i.e., a computation unit covers an area of connected pixels of the same vegetation type (a crop field, forest patch, etc.). To evaluate our simulations, we used in situ measurements of evapotranspiration and latent and sensible heat flux from two eddy covariance stations in the study area. Our results show that the use of Formosat-2 high-resolution products significantly improves simulated evapotranspiration results with respect to ECOCLIMAP-II, especially when a surface is covered with summer crops (the correlation coefficient with monthly measurements is increased by roughly 0.3 and the root mean square error is decreased by roughly 31 %). This finding is attributable to a better description of LAI evolution processes reflected by Formosat-2 data, which further modify soil water content and drainage levels of deep soil reservoirs. Effects on annual drainage patterns remain small but significant, i.e., an increase roughly equivalent to 4 % of annual precipitation levels from Formosat-2 data in comparison to reference values. In smaller proportions, runoff is also increased by roughly 1 % of annual precipitation when using Formosat-2 data. This study illustrates the potential for the Sentinel-2 mission to better represent effects of crop management on water budgeting for large, anthropized river basins.

Share - Bookmark

Cite this article

Collected from