Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Charbit, S.; Ritz, C.; Philippon, G.; Peyaud, V.; Kageyama, M. (2006)
Publisher: European Geosciences Union (EGU)
Languages: English
Types: Article
Subjects: [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, Environmental pollution, GE1-350, TD172-193.5, Environmental sciences, Environmental protection, TD169-171.8
International audience; A 3-dimensional thermo-mechanical ice-sheet model is used to simulate the evolution of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. The ice-sheet model is forced by the results from six different atmospheric general circulation models (AGCMs). The climate evolution over the period under study is reconstructed using two climate equilibrium simulations performed for the Last Glacial Maximum (LGM) and for the present-day periods and an interpolation through time between these snapshots using a glacial index calibrated against the GRIP d18O record. Since it is driven by the timing of the GRIP signal, the temporal evolution of the ice volume and the ice-covered area is approximately the same from one simulation to the other. However, both ice volume curves and spatial distributions of the ice sheets present some major differences from one AGCM forcing to the other. The origin of these differences, which are most visible in the maximum amplitude of the ice volume, is analyzed in terms of differences in climate forcing. This analysis allows for a partial evaluation of the ability of GCMs to simulate climates consistent with the reconstructions of past ice sheets. Although some models properly reproduce the advance or retreat of ice sheets in some specific areas, none of them is able to reproduce both North American or Eurasian ice complexes in full agreement with observed sea-level variations and geological data. These deviations can be attributed to shortcomings in the climate forcing and in the LGM ice-sheet reconstruction used as a boundary condition for GCM runs, but also to missing processes in the ice-sheet model itself.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adler, R. F., Susskind, J., Huffman, G. J., Bolvin, D., Nelkin, E., Chang, A., Ferraro, R., Gruber, A., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., and Arkin, P.: The Version2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present), J. Hydrometeorol., 4(6), 1147-1167, 2003.
    • Alexander, R. C. and Mobley, R. L.: Monthly average sea surface temperatures and ice pack limits on a 1 global grid, Mon. Wea. Rev., 104, 143-148, 1976.
    • Andersen, K. K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H., et al.: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147-151, 2004.
    • Andrews, J. T. and Barry, R. G.: Glacial inception and disintegration during the last glaciation, Ann. Rev. Earth Planet. Sci., 6, 205-228, 1978.
    • Bamber, J. L., Layberry, R. L., and Gogenini, S. P.: A new ice thickness and bed data set for the Greenland ice sheet. 1. Measurement, data reduction and errors, J. Geophys. Res., 106(D24), 33 773-33 780, 2001.
    • Bard, E., Hamelin, B., and Fairbanks, R. B.: U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years, Nature, 346, 456-458, 1990.
    • Bard, E., Jouannic, C., Hamelin, B., Pirazzoli, P., Arnold, M., Faure, G., Sumosusastro, P., and Syaefudin: Pleistocene sea levels and tectonic uplift based on dating of corals from Sumba Island, Indonesia, Geophys. Res. Lett., 23(12), 1473-1476, 1996a.
    • Bard, E., Hamelin, B., Arnold, A., Montaggioni, L., Cabioch, G., Faure, G., and Rougerie, F.: Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge, Nature, 382, 241-244, 1996b.
    • Bard, E., Rostek, F., and Me´not-Combes, G.: A better radiocarbon clock, Science, 303, 178-179, 2004.
    • Bassinot, F., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J., and Lancelot, Y.: The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal, Earth Planet. Sci. Lett., 126, 91-108, 1994.
    • Berger, A.: Long-term variations of daily insolation and quaternary climatic changes, J. Atmos. Sci., 35, 2362-2367, 1978.
    • Bintanja, R., van de Wal, R. S. W., and Oerlemans, J.: Global ice volume variations through the last glacial cycle simulated by a 3-D ice dynamical model, Quater. Int., 95-96, 11-23, 2002.
    • Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: Correlations between climate records from North Atlantic sediments and Greenland ice, Nature, 365, 143-147, 1993.
    • Brigham-Grette, J.: New perspectives on Berigian Quaternary paleogeography, stratigraphy and glacial history, Quater. Sci. Rev., 20, 15-24, 2001.
    • Charbit, S., Ritz, C., and Ramstein, G.: Simulations of Northern Hemisphere ice-sheet retreat: sensitivity to physical mechanisms involved during the Last Deglaciation, Quater. Sci. Rev., 21, 243-265, 2002.
    • Clague, J. J. and James, T. S.: History and isostatic effects of the last ice sheet in southern Bristish Columbia, Quater. Sci. Rev., 21, 71-87, 2002.
    • Clark, P. U. and Bartlein, P. J.: Correlation of Late Pleistocene glaciation in the western United States with North Atlantic Heinrich events, Geology, 23(6), 483-486, 1995.
    • Clark, P. U., Clague, J. J., Curry, B. B., Dreimanis, A., Hicock, S. R., Miller, G. H., Berger, G. W., Eyles, N., Lamothe, M., Miller, B. B., Mott, R. J., Oldale, R. N., Stea, R. R., Szabo, J. P., Thorleifson, L. H., and Vincent, J.-S.: Initiation and developement of the Laurentide and Cordilleran ice sheets following the last interglaciation, Quater. Sci. Rev., 12, 79-114, 1993.
    • CLIMAP: Seasonal reconstruction of the Earth surface at the Last Glacial Maximum. Geological Society of America, Boulder, Colorado, 1981.
    • Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjo¨rnsdottir, A. E., Jouzel, J., and Bond, G.: Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364, 218-220, 1993.
    • Deblonde, G. and Peltier, W. R.: Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one-level seasonal energy balance model including realistic geography, J. Geophys. Res., 96(D5), 9189-9215, 1991.
    • Deblonde, G., Peltier, W. R., and Hyde, W. T.: Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one-level seasonal energy balance model including seasonal ice albedo feedback, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planeatry Change Section), 98, 37-55, 1992.
    • Dowdeswell, J. A.: The Greenland ice sheet and global sea-level rise, Science, 311, 963-964, 2006.
    • Dyke, A. S., Andrews, J. T., Clark, P. U., England, J. H., Miller, G. H., Shaw, J., and Veillette, J. J.: The Laurentide and Innuitian ice sheets during the Last Glacial Maximum, Quater. Sci. Rev., 21, 9-31, 2002.
    • Dyke, A. S. and Prest, V. K.: Late Wisconsinian and Holocene retreat of the Laurentide ice sheet, In: Geological Survey of Canada, Ottawa, Ontario, Map 1702A, scale: 1:500000, 1987.
    • Edwards, M. O.: Global gridded elevation and bathymetry (ETOPO5) digital raster data on a 5-minute geographic (lat × lon) 2160 × 4320 (centroid-registered) grid, National Oceanic and Atmospheric Administration, Boulder, Colorado, 1989.
    • Fairbanks, R. G.: A glacio-eustatic sea-level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation, Nature, 342, 637-641, 1989.
    • Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., and Chapell, J.: Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate filed sites, Earth Planet. Sci. Lett., 163, 327-342, 1998.
    • Galle´e, H., van Ypersele, J. P., Fichefet, T., Tricot, C., and Berger, A.: Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice-sheet model 2. Response to insolation and CO2 variations, J. Geophys. Res., 97(D14), 15 713-15 740, 1992.
    • Greve, R., Weis, M., and Hutter, K.: Palaeoclimatic evolution and present conditions of the Greenland ice sheet in the vicinity of summit: an approach by large-scale modelling, Paleoclimates, 2(2-3), 133-161, 1998.
    • Huybrechts, P.: Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles, Quater. Sci. Rev., 21, 203-231, 2002.
    • Johnsen, S. J., Dahl-Jensen, D., Dansgaard, D.. and Gundestrup, N.: Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles, Tellus, 47(B), 624- 269, 1995.
    • Joseph, D.: Navy 10' global elevation values, National Center for Atmospheric Research, Boulder, Colorado, 3 pp., 1980.
    • Joussaume, S. and Taylor, K.: Status of the Paleoclimate Modelling Intercomparison Project (PMIP), in: First International AMIP Conference, Proceedings of the first international AMIP Conference, edited by: Gates, W. L., World. Meteorol. Organ., Geneva, pp. 425-430, 1995.
    • Kageyama, M., Charbit, S., Ritz, C., Khodri, M., and Ramstein, G.: Quantifying ice-sheet feedbacks during the last glacial inception, Geophys. Res. Lett., 31, L24203, doi:10.1029/2004GLO21339; 2004.
    • Kageyama, M., Laˆıne´, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C. D., Kitoh, A., et al.: Last Glacial Maximum temperatures over the North Atlantic, Europe and Western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions, Quater. Sci. Rev., 25(17-18), 2082-2102, 2006.
    • Kineman, J.: FNOC/NCAR Global elevation, Terrain, and Surface Characteristics, Digital Dataset, 28MB; 1985.
    • Kleman, J., Fastook, J., and Stroeven, A. P.: Geologically and geomorphologically constrained numerical model of Laurentide ice sheet inception and build-up, Quater. Int., 95-96, 87-98, 2002.
    • Krinner, G., Boucher, O., and Balkanski, Y.: Ice-free northern Asia due to dust deposition on snow, Clim. Dyn., 27, 613-625, doi:10.1007/s00383-006-0159-z, 2006.
    • Lambeck, K.: Constraints on the Late Weichselian ice sheet over the Barents Sea from observations of raised shorelines, Quater. Sci. Rev., 14, 1-16, 1995.
    • Lambeck, K. and Chappell, J.: Sea level change through the last glacial cycle, Science, 292, 679-686, 2001.
    • Lambeck, K., Yokoyama, Y., Johnston, P., and Purcell, A.: Global ice volumes at the Last Glacial Maximum and early Lateglacial, Earth Planet. Sci. Lett., 181, 513-527, 2000.
    • Lambeck, K., Yokoyama, Y., and Purcell, T.: Into and out of the last glacial maximum: sea-level change during oxygen isotopes stages 3 and 2, Quater. Sci. Rev., 21, 343-360, 2002.
    • Lambeck, K., Purcell ,A., Funder, S., Kjaer, K. H., Larsen, E., and Moller, P.: Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling, Boreas, 35, 539-575, 2006.
    • Mann, D. H. and Hamilton, T. H.: Late Pleistocene and Holocene paleoenvironments of the North Pacific Coast, Quater. Sci. Rev., 14, 449-471, 1995.
    • Marshall, S. J., James, T. S., and Clarke, G. K. C.: North American ice sheet reconstructions at the Last Glacial Maximum, Quater. Sci. Rev., 21, 175-192, 2002.
    • Marshall, S. J., Sharp, M. J., Burgess, D. O., and Anslow, F. S.: Near-surface temperature lapse rates on the Prince of Wales icefield, Ellesmere Island, Canada: implications for regional downscaling of temperature, Int. J. Climatol., doi:10.1002/joc.1396, 2006.
    • Marshall, S. J., Tarasov, L., Clarke, G. K. C., and Peltier, W. R.: Glaciological reconstruction of the Laurentide Ice Sheet: physical processes and modelling challenges, Can. J. Earth Sci., 37, 769-793, 2000.
    • Marsiat, I.: Simulation of the Northern Hemisphere continental ice sheets over the last glacial interglacial cycle: experiments with a latitude-longitude vertically integrated ice sheet model coupled to a zonally averaged climate model, Paleoclimates, 1(1), 59-98, 1994.
    • Milne, G. A., Mitrovica, J. X., and Schrag, D. P.: Estimating past continental ice volume from sea-level data, Quater. Sci. Rev., 21, 361-376, 2002.
    • New, M., Hulme, M., and Jones, P.: Representing twentieth-century space-time climate variability. Part 1: Development of a 1961- 90 mean monthly terrestrial climatology, J. Clim., 12, 829-856, 1999.
    • Ohmura, A. and Reeh, N.: New precipitation and accumulation maps for Greenland, J. Glaciol., 37, 140-148, 1991.
    • Peltier, W. R.: Ice age paleotopography, Science, 265, 195-201, 1994.
    • Peltier, W. R.: Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Ann. Rev. Earth Planet. Sci., 32, 111-149, 2004.
    • Peltier, W. R. and Marshall, S.: Coupled energy-balance/ice-sheet model simulations of the glacial cycle: A possible connection between terminations and terrigeneous dust, J. Geophys. Res. Lett., 100(D7), 14 269-14 289, 1995.
    • Peyaud, V., Roˆle de la dynamique des calottes glaciaires dans les grands changements climatiques des pe´riodes glaciairesinterglaciaires, PhD thesis, Joseph-Fourier University, Grenoble, France, 2006.
    • Pollard, D. and Groups, P. P.: Comparisons of ice-sheet surface mass budgets from Paleoclimate Modeling Intercomparison Project (PMIP) simulations, Global Planet. Change, 24, 79-106, 2000.
    • Raynaud, D., Jouzel, J., Barnola, J.-M., Chappelaz, J., Delmas, R. J., and Lorius, C.: The ice record of greenhouse gases, Science, 259, 926-934, 1993.
    • Reeh, N.: Parameterization of melt rate and surface temperature on the Greenland ice sheet, Polarforschung, 59, 113-128, 1991.
    • Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Warren Beck, J., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., et al.: IntCal04 Terrestrial radiocarbon age calibration 0-26 kyr BP, Radiocarbon, 46(3), 1029-1058, 2004.
    • Reynolds, R. W.: A real-time global sea-surface temperature analysis, J. Clim., 1, 75-86, 1988.
    • Rignot, E. and Kanagaratnam, P.: Changes in the velocity structure of the Greenland ice sheet, Science, 311, 986-990, 2006.
    • Ritz, C., Fabre, A., and Letre´guilly, A.: Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last climatic cycle, Clim. Dyn., 13, 11-24, 1997.
    • Ritz, C., Rommelaere, V., and Dumas, C.: Modeling the Antarctic ice sheet evolution of the last 420 000 years: implication for altitude changes in the Vostok region, J. Geophys. Res., 106(D23), 31 943-31 964, 2001.
    • Roe, G. H. and Lindzen, R. S.: The mutual-interaction between continental-scale ice-sheets and atmospherice stationary waves, J. Clim., 14(7), 1450-1465, 2001.
    • Serreze, M. C. and Hurst, C. R.: Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses, J. Clim., 13, 182-201, 2001.
    • Shea, D. J., Trenberth, K. E., and Reynolds, R. W.: A global monthly sea-surface temperature climatology, NCAR technical note, NCAR/TN-345, 167pp, 1990.
    • Siegert, M. J., Dowdeswell, J. A., Hald, M., and Svendsen, J. I.: Modelling the Eurasian ice sheet through a full (Weichselian) glacial cycle, Global Planet. Change, 31, 367-385, 2001.
    • Siegert, M. J., Dowdeswell, J. A., and Melles, M.: Late Weichselian Glaciation of the Russian high Arctic, Quater. Res., 52, 273-285, 1999.
    • Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., et al.: Late Quaternary ice sheet history of Northern Eurasia, Quater. Sci. Rev., 23, 1229-1271, 2004.
    • Tarasov, L. and Peltier, W. R.: Terminating the 100 kyr ice age cycle, J. Geophys. Res., 102(D18), 21 665-21 693, 1997.
    • Tarasov, L. and Peltier, W. R.: Impact of thermomechanical ice sheet coupling of the 100 kyr ice age cycle, J. Geophys. Res., 104(D8), 9517-9545, 1999.
    • Tarasov, L. and Peltier, W. R.: A geophysically constrained large ensemble analysis of the deglacial history of the North American ice sheet complex, Quater. Sci. Rev., 23, 359-388, 2004.
    • Vartanyan, S. L., Arskhanov, Kh. A., Tertychnaya, T. V., and Chernov, S. B.: Radiocarbon dating evidence for mammoths on Wrangel Island, Artic Ocean, until 2000 BC, Radiocarbon, 37(1), 1-6, 1995.
    • Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records, Quater. Sci. Rev., 21, 295- 305, 2002.
    • Yokoyama, Y., Lambeck, K., De Dekker, P., Johnston, P., and Fifield, L. K.: Timing of the Last Glacial Maximum from observed sea-level minima, Nature, 406, 713-716, 2000.
    • Zweck, C. and Huybrechts, P.: Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity, J. Geophys. Res., 110, D07103, doi:10.1029/2004JD005489, 2005.
  • No related research data.
  • No similar publications.