Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Stier, P.; Feichter, J.; Roeckner, E.; Kloster, S.; Esch, M. (2005)
Publisher: European Geosciences Union
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, DOAJ:Earth and Environmental Sciences, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, GE1-350, G, DOAJ:Environmental Sciences, Geography. Anthropology. Recreation, Caltech Library Services, Environmental sciences, QC801-809
The evolution of the global aerosol system from 1860 to 2100 is investigated through a transient atmosphere-ocean General Circulation Model climate simulation with interactively coupled atmospheric aerosol and oceanic biogeochemistry modules. The microphysical aerosol module HAM incorporates the major global aerosol cycles with prognostic treatment of their composition, size-distribution, and mixing state. Based on an SRES A1B emission scenario, the global mean sulfate burden is projected to peak in 2020 while black carbon and particulate organic matter show a lagged peak around 2070. From present day to future conditions the anthropogenic aerosol burden shifts generally from the northern high-latitudes to the developing low-latitude source regions with impacts on regional climate. Atmospheric residence- and aging-times show significant alterations under varying climatic and pollution conditions. Concurrently, the aerosol mixing-state changes with an increasing aerosol mass fraction residing in the internally mixed accumulation mode. The associated increase in black carbon causes a more than threefold increase of its co-single scattering albedo from 1860 to 2100. Mid-visible aerosol optical depth increases from pre-industrial times, predominantly from the aerosol fine fraction, peaks at 0.26 around the sulfate peak in 2020 and maintains a high level thereafter, due to the continuing increase in carbonaceous aerosols. The global mean anthropogenic top of the atmosphere clear-sky short-wave direct aerosol radiative perturbation intensifies to &minus;1.1 W m<sup>&minus;2</sup> around 2020 and weakens after 2050 to &minus;0.6 W m<sup>&minus;2</sup>, owing to an increase in atmospheric absorption. The demonstrated modifications in the aerosol residence- and aging-times, the microphysical state, and radiative properties challenge simplistic approaches to estimate the aerosol radiative effects from emission projections.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adams, P. J., Seinfeld, J. H., and Koch, D. M.: Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model, J. Geophys. Res., 104, 13 791-13 824, 1999.
    • Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227-1230, 1989.
    • Andreae, M. O.: Global biomass burning: Atmosphere, climatic, and biospheric implications, chap. Biomass burning: Its history, use and distribution, and its impact on environmental quality in global climate, 15-42, MIT Press, Cambridge, MA, 1991.
    • A˚ngstro¨m, A.: Atmospheric turbidity, global illumination and planetary albedo of the earth, Tellus, 14, 435-450, 1962.
    • Barth, M. C. and Church, A. T.: Regional and global distributions and lifetimes of sulfate aerosols from Mexico City and southeast China, J. Geophys. Res., 104, 30 231-30 240, doi:10.1029/1999JD900 809, 1999.
    • Christopher, S. A. and Zhang, J.: Cloud-free shortwave aerosol radiative effect over oceans: Strategies for identifying anthropogenic forcing from Terra satellite measurements, Geophys. Res. Lett., 31, L18 101, doi:10.1029/2004GL020 510, 2004.
    • Cooke, W. F., Koffi, B., and Gregoire, J.-M.: Seasonality of vegetation fires in Africa from remote sensing data and application to a global chemistry model, J. Geophys. Res., 101, 21 051-21 065, 1996.
    • Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: Construction of a 1◦×1◦ fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J. Geophys. Res., 104, 22 137-22 162, 1999.
    • Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750, prescribed data-sets for AeroCom, Atmos. Chem. Phys. Discuss., 6, 2703-2763, 2006, http://www.atmos-chem-phys-discuss.net/6/2703/2006/.
    • Feichter, J., Kjellstro¨m, E., Rodhe, H., Dentener, F., Lelieveld, J., and Roelofs, G.-J.: Simulation of the tropospheric sulfur cycle in a global climate model, Atmos. Environ., 30, 1693-1707, 1996.
    • Fouquart, Y. and Bonnel, B.: Computations of solar heating of the earth's atmosphere: A new parameterization, Beitr. Phys. Atmos., 53, 35-62, 1980.
    • Graf, H.-F., Feichter, J., and Langmann, B.: Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution, J. Geophys. Res., 102, 10 727-10 738, 1997.
    • Graßl, H.: Albedo reduction and radiative heating of clouds by absorbing aerosol particles, Contributions Atmospheric Physics, 48, 199-210, 1975.
    • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873-8892, 1995.
    • Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Genio, A. D., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A., and Tausnev, N.: Earth's energy imbalance: confirmation and implications, Science, 308, 1431-1435, doi:10.1126/science.1110252, 2005.
    • Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response, J. Geophys. Res., 102, 6831-6864, 1997.
    • Holben, B. N., Tanre´, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Castle, J. V., Setzer, A., Markham, B., Frouin, D. C. R., Halthore, R., Karneli, A., O'Neill, N. T., Pietras, C., Pinker, R. T., Voss, K., and Zibordi, G.: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET, J. Geophys. Res., 106, 12 067-12 098, 2001.
    • Ignatov, A. and Stowe, L.: Aerosol retrievals from individual AVHRR channels. part I: retrieval algorithm and transition from dave to 6S radiative transfer model, J. Atmos. Sci., 59, 313-334, 2002a.
    • Ignatov, A. and Stowe, L.: Aerosol retrievals from individual AVHRR channels. part II: quality control, probability distribution functions, information content, and consistency checks of retrievals, J. Atmos. Sci., 59, 335-362, 2002b.
    • Ito, A. and Penner, J. E.: Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000, Global Biogeochem. Cycles, 19, GB2028, doi:10.1029/2004GB002 374, 2005.
    • Jacobson, M. Z.: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res., 107, 4410, doi:10.1029/2001JD001 376, 2002.
    • Johns, T. C., Gregory, J. M., Ingram, W. J., Johnson, C. E., Jones, A., Lowe, J. A., Mitchell, J. F. B., Roberts, D. L., Sexton, D. M. H., Stevenson, D. S., Tett, S. F. B., and Woodage, M. J.: Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios, Clim. Dyn., 20, 583-612, doi:10.1007/s00382-002-0296-y, 2003.
    • Johnson, K., Gordon, R., and Coale, K.: What controls dissolved iron concentrations in the world ocean?, Marine Chemistry, 57, 137-161, 1997.
    • Jungclaus, J., Botzet, M., Haak, H., Keenlyside, N., Luo, J., Latif, M., Marotzke, J., Mikolajewicz, U., and Roeckner, E.: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM, J. Clim., in press, 2006.
    • Kaufman, Y. J., Tanre´, D., Remer, L. A., Vermote, E. F., Chu, A., and Holben, B. N.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102, 17 051-17 068, 1997.
    • Kaufman, Y. J., Boucher, O., Tanre´, D., Chin, M., Remer, L. A., and Takemura, T.: Aerosol anthropogenic component estimated from satellite data, Geophys. Res. Lett., 32, L17 804, doi:10.1029/2005GL023 125, 2005.
    • Khairoutdinov, M. and Kogan, Y.: A new cloud physics parameterization in a Large-Eddy simulation model of marine stratocumulus, Mon. Wea. Rev., 128, 229-243, 2000.
    • Kloster, S., Feichter, J., Maier-Reimer, E., Six, K., Stier, P., and Wetzel, P.: DMS cycle in the marine ocean-atmosphere system - a global model study, Biogeosci., 3, 29-51, 2006.
    • Krivova, N. and Solanki, S.: Solar variability and global warming: a statistical comparison since 1850, Adv. Space Res., 34, 361-364, 2004.
    • Lefohn, A. S., Husar, J. D., and Husar, R. B.: Estimating historical anthropogenic global sulfur emission patterns for the period 1850-1990, Atmos. Environ., 33, 3435-3444, 1999.
    • Levy, R. C., Remer, L. A., Martins, J. V., Kaufman, Y. J., Planafattori, A., Redemann, J., and Wenny, B.: Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS, J. Atmos. Sci., 62, 974-991, 2005.
    • Liepert, B. G., Feichter, J., Lohmann, U., and Roeckner, E.: Can aerosols spin down the water cycle in a warmer and moister world?, Geophys. Res. Lett., 31, L06 207, doi:10.1029/2003GL019 060, 2004.
    • Likens, G. E. and Bohrmann, F. H.: Acid rain: a serious regional environmental problem, Science, New Series, 184, 1176-1179, 1974.
    • Lin, H. and Leaitch, R.: Development of an in-cloud aerosol activation parameterization for climate modelling, in: WMO Workshop on measurement of cloud properties for forcasts of weather, 328-335, World Meteorological Organization, Geneva, 1997.
    • Lin, S. J. and Rood, R. B.: Multidimensional flux form semiLagrangian transport, Mon. Wea. Rev., 124, 2046-2068, 1996.
    • Liu, Y., Sarnat, J. A., Coull, B. A., Koutrakis, P., and Jacob, D. J.: Validation of Multiangle Imaging Spectroradiometer (MISR) aerosol optical thickness measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States, J. Geophys. Res., 109, D06 205, doi:10.1029/2003JD0039 810, 2004.
    • Lohmann, U.: A glaciation indirect aerosol effect caused by soot aerosols, Geophys. Res. Lett., 29, 1052, doi:10.1029/2001GL014 357, 2002.
    • Lohmann, U. and Ka¨rcher, B.: First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model, J. Geophys. Res., 107, 4105, doi:10.1029/2001JD000 767, 2002.
    • Lohmann, U. and Roeckner, E.: Design and performance of a new cloud microphysics scheme developed for the ECHAM4 general circulation model, Clim. Dyn., 12, 557-572, 1996.
    • Lohmann, U., Feichter, J., Chuang, C. C., and Penner, J. E.: Predicting the number of cloud droplets in the ECHAM-GCM, J. Geophys. Res., 104, 9169-9198, 1999.
    • Maier-Reimer, E., Kriest, I. Segschneider, J., and Wetzel, P.: The HAMburg Ocean Carbon Cycle Model HAMOCC5.1 - Technical description release 1.1, Reports on Earth System Science, 14, Max Planck Institute for Meteorology, Hamburg, Germany, available from: http://www.mpimet.mpg.de, 50 pp., 2005.
    • Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Ro¨ske, F.: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates, Ocean Modelling, 5, 91-127, 2003.
    • Martin, J. H. and Fitzwater, S. E.: Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic, Nature, 331, 341-343, 1988.
    • Martonchik, J., Diner, D., Crean, K., and Bull, M.: Regional aerosol retrieval results from MISR, IEEE Trans. Geosci. Remote Sens., 40, 1520-1531, 2002.
    • Martonchik, J., Diner, D., Kahn, R., Gaitley, B., and Holben, B.: Comparison of MISR and AERONET aerosol optical depths over desert sites, Geophys. Res. Lett., 31, L16 102, doi:10.1029/2004GL019 807, 2004.
    • McAvaney, B. J., Covey, C., Joussaume, S., Kattsov, V., Kitoh, A., Ogana, W., Pitman, A. J., Weaver, A. J., Wood, R. A., and Zhao, Z.-C.: Climate change 2001: the scientific basis, chap. Model evaluation, 471-523, Cambridge University Press, 2001.
    • McCormic, R. A. and Ludwig, J. H.: Climate modifications by atmospheric aerosols, Science, 156, 1358-1359, 1967.
    • Meehl, G. A., Washington, W. M., III, D. J. E., Briegleb, B. P., and Jaumann, P. J.: Climate change from increased CO2 and direct and indirect effects of sulfate aerosols, Geophys. Res. Lett., 23, 3755-3758, doi:10.1029/96GL03 478, 1996.
    • Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.: Climate effects of black carbon aerosols in China and India, Science, 297, 2250- 2253, 2002.
    • Mitchell, J. F. B., Johns, T. C., Gregory, J. T., and Tett, S. F. B.: Climate response to increasing levels of greenhouse gases and sulfate aerosols, Nature, 376, 501-504, 1995.
    • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16 663-16 682, 1997.
    • Morcrette, J.-J., Clough, S. A., Mlawer, E. J., and Iacono, M. J.: Impact of a validated radiative transfer scheme, RRTM, on the ECMWF model climate and 10-day forecasts, Technical Memorandum 252, ECMWF, Reading, UK, 48 pp., 1998.
    • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, H., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T., Kram, T., Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Papper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z.: Special Report on Emissions Scenarios, Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 599 pp., 2000.
    • Nordeng, T. E.: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, Technical Memorandum 206, ECMWF, Reading, UK, 42 pp., 1994.
    • Okin, G., Mahowald, N., Chadwick, O., and Artaxo, P.: Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems, Global Biogeochem. Cycles, 18, GB2005, doi:10.1029/2003GB002 145, 2004.
    • Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman, A., Leaitch, R., Murphy, D., Nganga, J., and Pitari, G.: Climate change 2001: the scientific basis, chap. Aerosols, their direct and indirect effects, pp. 298-248, Cambridge University Press, 2001.
    • Pham, M., Boucher, O., and Hauglustaine, D.: Changes in atmospheric sulfur burdens and concentrations and resulting radiatve forcings under IPCC SRES emission scenarios for 1990-2100, J. Geophys. Res., 110, D06 112, doi:10.1029/2004JD005 125, 2005.
    • Rao, S., Riahi, K., and Kaarle Kupiainen, Z. K.: Long-term scenarios for black and organic carbon emissions, Environmental Sciences, 2, doi:10.1080/15693430500397228, 2005.
    • Roeckner, E., Bengtsson, L., Feichter, J., Lelieveld, J., and H.Rodhe: Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle, J. Clim., 12, 3004-3032, 1999.
    • Roeckner, E., Baeuml, G., Bonventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM5. PART I: Model description, Report 349, Max Planck Institute for Meteorology, Hamburg, Germany, available from http://www.mpimet.mpg.de, 2003.
    • Roeckner, E., Stier, P., Feichter, J., Kloster, S., Esch, M., and Fischer-Bruns, I.: Impact of carbonaceous aerosol forcing on regional climate change, Clim. Dyn., Online First, doi:10.1007/s00 382-006-0147-3, 2006.
    • Sato, M., Hansen, J., McCormick, M., and Pollack, J.: Stratospheric aerosol optical depht 1850-1990, J. Geophys. Res., 98, 22 987- 22 994, 1993.
    • Schaap, M., Van Der Gon, H. A. C. D., Dentener, F. J., Visschedijk, A. J. H., Van Loon, M., ten Brink, H. M., Putaud, J.-P., Guillaume, B., Liousse, C., and Builtjes, P. J. H.: Anthropogenic black carbon and fine aerosol distribution over Europe, J. Geophys. Res., 109(D18), 207, doi:10.1029/2003JD004 330, 2004.
    • Schulz, M., de Leeuw, G., and Balkanski, Y.: Emission of atmospheric trace compounds, chap, Sea-salt aerosol source functions and emissions, pp. 333-359, Ed. Kluwer, 2004.
    • Six, K. D. and Maier-Reimer, E.: Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model, Global Biogeochem. Cyc., 10, 559-583, 1996.
    • Solanki, S. and Krivova, N.: Can solar variability explain global warming since 1970?, J. Geophys. Res., 108, 1200, doi:10.1029/2002JA009 753, 2003.
    • Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Schulz, M., Balkanski, Y., Boucher, O., Minikin, A., and Petzold, A.: The aerosolclimate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125- 1165, 2005, http://www.atmos-chem-phys.net/5/1125/2005/.
    • Stier, P., Feichter, J., Kloster, S., Vignati, E., and Wilson, J.: Emission-induced nonlinearities in the global aerosol system - Results from the ECHAM5-HAM aerosol-climate model, J. Clim., in press, 2006.
    • Streets, D. G., Bond, T. C., Lee, T., and Jang, C.: On the future of carbonaceous aerosol emissions, J. Geophys. Res., 109, D24212, doi:10.1029/2004JD004 902, 2004.
    • Swap, R., Garstang, M., Greco, S., Talbot, R., and Kallberg, P.: Saharan dust in the amazon basin, Tellus B, 44, 133-149, 1992.
    • Takemura, T., Okamoto, H., Maruyama, Y., Numaguti, A., Higurashi, A., and Nakajima, T.: Tropospheric global threedimensional simulation of aerosol optical thickness distribution of various origins, J. Geophys. Res., 105, 17 853-17 873, 2000.
    • Takemura, T., Nozawa, T., Emori, S., Nakajima, T. Y., and Nakajima, T.: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model, J. Geophys. Res., 110(D02), 202, doi:10.1029/2004JD005 029, 2005.
    • Tanre´, D., Kaufman, Y. J., Herman, M., and Mattoo, S.: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances, J. Geophys. Res., 102, 16 971-16 988, 1997.
    • Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., and Heimann, M.: Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study, J. Geophys. Res., 107, 4576-4597, 2002.
    • Tegen, I., Werner, M., Harrison, S. P., and Kohfeld, K. E.: Relative importance of climate and land use in determining present and future global soil dust emission, Geophys. Res. Lett., 31, L05 105, doi:10.1029/2003GL019 216, 2004.
    • Tett, S. F. B., Jones, G. S., Stott, P. A., Hill, D. C., Mitchell, J. F. B., Allen, M. R., Ingram, W. J., Johns, T. C., Johnson, C. E., Jones, A., Roberts, D. L., Sexton, D. M. H., and Woodage, M. J.: Estimation of natural and anthropogenic contributions to twentieth century temperature change, J. Geophys. Res., 107, doi:10.1029/2000JD000 028, 2002.
    • Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large scale models, Mon. Wea. Rev., 117, 1779-1800, 1989.
    • Timmreck, C. and Schulz, M.: Significant dust simulation differences in nudged and climatological operation mode of the AGCM ECHAM, J. Geophys. Res., 109, D13 202, doi:10.1029/2003JD004 381, 2004.
    • Tompkins, A.: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover, J. Atmos. Sci., 59, 1917-1942, 2002.
    • Torres, O., Bhartia, P., Herman, J., Sinyuk, A., and Holben, B.: A long term record of aerosol optical thickness from TOMS observations and comparison to AERONET measurements, J. Atmos. Sci., 59, 398-413, 2002.
    • Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251-1256, 1974.
    • Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149-1152, 1977.
    • Unger, N., Shindell, D. T., Koch, D. M., and Streets, D. G.: Cross influences of ozone and sulfate precursor emissions changes on air quality and climate, Proc. Natl. Acad. Sci. U.S.A., 103, 4377- 4380, doi:10.1073/pnas.0508769103, 2006.
    • Vignati, E., Wilson, J., and Stier, P.: M7: a size resolved aerosol mixture module for the use in global aerosol models, J. Geophys. Res., 109(D22), 202, doi:10.1029/2003JD004 485, 2004.
    • Wannikhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373-7382, 1992.
    • Zhang, J., Christopher, S., Remer, L., and Kaufman, Y.: shortwave aerosol radiative forcing over cloud-free oceans from Terra: 2. seasonal and global distributions, J. Geophys. Res., 110, D10S24, doi:10.1029/2004JD005 009, 2005.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.