LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
R. Bučík; K. Kudela; S. N. Kuznetsov; I. N. Myagkova (2005)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, Science, Physics, QC1-999, QC801-809

Classified by OpenAIRE into

arxiv: Astrophysics::High Energy Astrophysical Phenomena, Physics::Space Physics
International audience; We present here observations of gamma rays in the energy range between 3.0 and 8.3 MeV gathered by the SONG instrument aboard low-altitude polar-orbiting satellite CORONAS-I throughout the period March-June 1994. We concentrate on the emissions related to the trapped particles and organize CORONAS-I measurements in the magnetic L?B coordinate system. The spatial distribution of the average gamma-ray counts reveals that the most intense fluxes were observed under the inner radiation belt, at L<2, and that they are exclusively confined into the region of stably trapped particles, where daughter gamma rays could result from the interactions within the spacecraft and instrumental matter. In the outer radiation zone (L~4), the enhanced gamma radiation, also detected outside the stably trapping region, shows pronounced longitudinal variations. The observed eastward increase in the gamma-ray count rate suggests quasi-traped energetic (megavolt) electrons as a source of the gamma rays both in the upper atmosphere and in the satellite matter, most likely, through the bremsstrahlung process in the studied energy domain.

Keywords. Magnetospheric physics (Energetic particles, precipitating; Energetic particles, trapped; Magnetosphereionosphere interactions)
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bala´zˇ, J., Dmitriev, A. V., Kovalevskaya, M. A., Kudela, K., Kuznetsov, S. N., Myagkova, I. N., Nagornikh, Yu. I., Rojko, J., and Ryumin, S. P.: Solar flare energetic neutral emission measurements in the project CORONAS-I, IAU Colloq. 144, Solar Coronal Structures, edited by: Rusˇin, V., Heinzel, P., and Vial, J.-C., VEDA, Bratislava, 635-639, 1994.
    • Bucˇ´ık, R. and Kudela, K.: On mass in 4π solid angle around SONG CsI scintillator aboard CORONAS-I satellite, Acta Phys. Slovaca, 53, 329-345, 2003.
    • Chupp, E. L.: Gamma-ray Astronomy, D. Reidel, Dordrecht, Holland, 222-235, 1976.
    • Dean, A. J., Lei, F., and Knight, P. J.: Background in spaceborne low-energy γ -ray telescopes, Space Sci. Rev., 57, 109- 186, 1991.
    • Dmitriev, A. V., Kudela, K., Kuznetsov, S. N., Myagkova, I. N., Rojko, J., and Ryumin, S. P.: The SONG device for detection of the solar flare neutron and gamma radiation in CORONAS experiment (in Russian), Izv. Akad. Nauk Ser. Fiz., 57, 27-30, 1993.
    • Dyer, C. S., Truscott, P. R., Hammond, N. D. A., and Comber, C.: Radioactivity induced in gamma ray spectrometers, HighEnergy Radiation Background in Space, AIP Conf. Proc., vol. 186,, edited by: Rester, A. C. and Trombka, J. I., American Institute of Physics, New York, 278-288, 1989.
    • Efimov, Y. E., Gusev, A. A., Kudela, K., Just, L., and Pugacheva, G. I.: Spatial distribution of albedo particles on altitudes ∼ 500 km, Czech. J. Phys. B, 35, 1371-1381, 1985.
    • Feldman, W. C., Symbalisty, E. M. D., and Roussel-Dupre´, R. A.: Hard X-ray survey of energetic electrons from low-Earth orbit, J. Geophys. Res., 101, 5195-5209, 1996.
    • Fiandrini, E., Esposito, G., Bertucci, B., Alpat, B., Battiston, R., Burger, W. J., Lamanna, G., and Zuccon, P.: Leptons with E>200 MeV trapped in the Earth's radiation belts, J. Geophys. Res., 107, 1067, doi:10.1029/2001JA900151, 2002.
    • Fiandrini, E., Esposito, G., Bertucci, B., et al.: High-energy protons, electrons, and positrons trapped in Earth's radiation belts, Space Weather, 2, S09S02, doi:10.1029/2004SW000068, 2004.
    • Harris, M. J., Share, G. H., and Leising, M. D.: Spatial and temporal variability of the gamma radiation from Earth's atmosphere during a solar cycle, J. Geophys. Res., 108, 1435, doi:10.1029/2003JA009958, 2003.
    • Imhof, W. L., Nakano, G. H., Johnson, R. G., and Reagan, J. B.: Satellite observations of bremsstrahlung from widespread energetic electron precipitation events, J. Geophys. Res., 79. 565- 574, 1974.
    • Imhof, W. L.: Review of energetic (>20 keV) bremsstrahlung Xray measurements from satellites, Space Sci. Rev., 29, 201-217, 1981.
    • Johnson, W. N., Kinzer, R. L., Kurfess, J. D., et al.: The oriented scintillation spectrometer experiment: Instrument description, Astrophys. J. Suppl., 86, 693-712, 1993.
    • Kuznetsov, S. N., Gotselyuk, Y. V., Podorolsky, A. N., Ryumin, S. P., Fisher, S., and Kudela, K.: Scientific goals and specific devices of the Solar Cosmic Rays (SCR) scientific set of instruments in the CORONAS project, CORONAS information, vol. 3, edited by: Pflug, K., Central Institute for Astrophysics, Potsdam, Germany, 1991.
    • Kuznetsov, S. N. and Myagkova, I. N.: Quasi-trapped electron fluxes (>0.5 MeV) under the radiation belts: analysis of their connection with geomagnetic indices, J. Atmos. Terr. Phys., 64, 601-605, 2002.
    • Lemaire, J., Johnstone, A. D., Heynderickx, D., Rodgers, D. J., Szita, S., and Pierrard, V.: TREND-2, Trapped radiation environment model development, Final Report, ESTEC/Contract No. 9829/92/NL/FM, 1995.
    • Lorentzen, K. R., McCarthy, M. P., Parks, G. H., et al.: Precipitation of relativistic electrons by interaction with electromagnetic ion cyclotron waves, J. Geophys. Res., 105, 5381-5389, 2000.
    • McIlwain, C. E.: Coordinates for mapping the distribution of magnetically trapped particles, J. Geophys. Res., 66, 3681-3691, 1961.
    • Millan, R. M., Lin, R. P., Smith, D. M., Lorentzen, K. R., and McCarthy, M. P.: X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer, Geophys. Res. Lett., 29, 2194, doi:10.1029/2002GL015922, 2002.
    • Roederer, J. G.: Dynamics of Geomagnetically Trapped Radiation, Springer-Verlag, Berlin, 96-101, 1970.
    • Rossi, B. and Olbert, S.: Introduction to the Physics of Space, McGraw-Hill, New York, 186-191, 1970.
    • Ryumin, S. P., Bogomolov, A. V., Dmitriev A. V., and Myagkova, I. N.: Background conditions for recording γ radiation and energetic neutrons on CORONAS satellites from SONG data, J. Moscow Phys. Soc., 6, 423-430, 1996.
    • Sawyer, D. M. and Vette, J. I.: AP-8 trapped proton environment for solar maximum and solar minimum, NSSDC 76-06, NASA Goddard Space Flight Center, Greenbelt, Md., 1976.
    • Selesnick, R. S., Blake, J. B., and Mewaldt, R. A.: Atmospheric losses of radiation belt electrons, J. Geophys. Res., 108, 1468, doi:10.1029/2003JA010160, 2003.
    • Share, G. H., Kinzer, R. L., Strickman, M. S., Letaw, J. R., Chupp, E. L., Forrest, D. J., and Rieger, E.: Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer, High-Energy Radiation Background in Space, AIP Conf. Proc., vol. 186, edited by: Rester, A. C. and Trombka, J. I., American Institute of Physics, New York, 266-277, 1989.
    • Share, G. H., Murphy, R. J., Dennis, B. R., et al.: RHESSI observation of atmospheric gamma rays from impact of solar energetic particles on 21 April 2002, Solar Phys., 210, 357-372, 2002.
    • Vampola, A. L. and Gorney, D. J.: Electron energy deposit in the middle atmosphere, J. Geophys. Res., 88, 6267-6274, 1983.
    • Vampola, A. L. and Kuck, G. A.: Induced precipitation of inner zone electrons, Volume I: Observations, SAMSO-TR-77-134, The Aerospace Corporation, Los Angels, CA, 1977.
    • Vette, J. I.: The AE-8 trapped electron model environment, NSSDC 91-24, NASA Goddard Space Flight Center, Greenbelt, Md., 1991.
    • Walt, M.: Introduction to Geomagnetically Trapped Radiation, University Press, Cambridge, Great Britain, 59-86, 1994.
  • No related research data.
  • No similar publications.