LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Singh, Arvind; Singh, Upendra Kumar (2017)
Languages: English
Types: Article
Subjects:
This paper deals with the application of continuous wavelet transform (CWT) and Euler deconvolution methods to estimate the source depth using magnetic anomalies. These methods are utilized mainly to focus on the fundamental issue of mapping the major coal seam and locating tectonic lineaments. The main aim of the study is to locate and characterize the source of the magnetic field by transferring the data into an auxiliary space by CWT. The method has been tested on several synthetic source anomalies and finally applied to magnetic field data from Jharia coalfield, India. Using magnetic field data, the mean depth of causative sources points out the different lithospheric depth over the study region. Also, it is inferred that there are two faults, namely the northern boundary fault and the southern boundary fault, which have an orientation in the northeastern and southeastern direction respectively. Moreover, the central part of the region is more faulted and folded than the other parts and has sediment thickness of about 2.4 km. The methods give mean depth of the causative sources without any a priori information, which can be used as an initial model in any inversion algorithm.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ardestani, E. V.: Precise Edge detection of gravity anomalies by Tilt angle filters, J. Earth & Space Phys., 36, 2, 11-19, 2010.
    • Barbosa, V. C. F., Silva, J. B. C., and Medeiros, W. E.: Stability analysis and improvement of structural index estimation in Euler deconvolution, Geophysics, 64, 48-60, 1999.
    • Blakely, R. J. and Simpson, R. W.: Approximating edges of source bodies from magnetic or gravity anomalies, Geophysics, 51, 1494-1498, 1986.
    • Bhattacharyya, B. P.: Tectono-metamorphic effect of granite and pegmatite emplacement in the Precambrian of Bihar Mica Belt. Proc. Symp. On Metallogeny of the Precambrian, Geological Society of India, Bangalore, India, 45-56, 1972.
    • Chamoli, A., Srivastava, R. P., and Dimri, V. P.: Source depth characterization of potential field data of Bay of Bengal by continuous wavelet transform, Indian J. Mar. Sci., 35, 195-204, 2006.
    • Clark, D. A. and Emerson, D. W.: Notes on rock magnetization characteristics in applied geophysical studies, Explor. Geophys., 22, 547-555, 1991.
    • Cooper, G. R. J.: A semi-automatic procedure for the interpretation of geophysical data, Explor. Geophys., 35, 180-185, 2004.
    • Cooper, G. R. J.: The semiautomatic interpretation of gravity profile data, Computat. Geosci., 37, 1102-1109, 2011.
    • Cooper, G. R. I. and Cowan, D. R.: Enhancing potential field data using filters based on the local phase, Computat. Geosci., 32, 1585-1591, 2006.
    • Cooper, G. R. J. and Cowan, D. R.: Edge enhancement of potential field data using normalized statistics, Geophysics, 73, H1-H4, 2008.
    • Coleman, T. F. and Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds, SIAM J. Optimiz., 6, 418-445, 1996.
    • Dewangan, P., Ramprasad, T., Ramana, M. V., Desa, M., and Shailaja, B.: Automatic interpretation of magnetic data using Euler deconvolution with nonlinear background, Pure Appl. Geophys., 164, 2359-2372, 2007.
    • FitzGerald, D., Reid A., and McInerney, P.: New discrimination techniques for Euler deconvolution, Computat. Geosci., 30, 461- 469, 2004.
    • Fox, C. S.: The Jharia Coal Field, Geological Survey of India, Memoir, 56, 1-255, 1930.
    • Gee, E. R.: The geology and coal resources of the Raniganj coalfield, Mem. Geol. Surv. India, 61, 1-343, 1932.
    • Gerovska, D. and Arauzo Bravo, M. J.: Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index, Computat. Geosci., 29, 949-960, 2003.
    • Goyal., P. and Tiwari, V. M.: Application of the continuous wavelet transform of gravity and magnetic data to estimate sub-basalt sediment thickness, Geophys. Prospect., 62, 148-157, 2014.
    • Gunn, P. J.: Linear transformations of gravity and magnetic fields, Geophys. Prospect., 23, 300-312, 1975.
    • Holschneider, M., Chambodut, A., and Mandea, M.: From global to regional analysis of the magnetic field on the sphere using wavelet frames, Phys. Earth Planet. In., 135, 107-124, 2003.
    • Hunt, C. P., Moskowitz, B. M., and Banerjee, S. K.: Magnetic properties of Rocks and Minerals, in: Rock Physics and Phase Relations - A hand book of Physical constants, AGU Reference shelf 3, edited by: Ahrens, T. J., 189-204, 1995.
    • Hsu, S. K.: Imaging magnetic sources using Euler's equation, Geophys. Prospect., 50, 15-25, 2002.
    • Hsu, S. K., Sibuet, J. C., and Shyu, C. T.: High resolution detection of geologic boundaries from potential-field anomalies: an enhanced analytic signal: technique, Geophysics, 61, 373-386, 1996.
    • Keating, P. B.: Weighted Euler deconvolution of gravity data, Geophysics, 63, 1595-1603, 1998.
    • Kopal., Z.: Numerical analysis, Chapman and Hall Ltd., London, UK, 551-553, 1961.
    • Melo, F. F., Barbosa, V. C. F., Uieda, L., Oliveira Jr., V. C., and Silva, J. B. C.: Estimating the nature and the horizontal and vertical positions of 3-D magnetic sources using Euler deconvolution, Geophysics, 78, J87-J98, 2013.
    • Moreau, F., Gibert, D., Holschneider, M., and Saracco, G.: Wavelet analysis of potential fields, Inverse Probl., 13, 165-178, 1997.
    • Moreau, F., Gibert, D., Holschneider, M., and Saracco, G.: Identification of sources of potential fields with continuous wavelet transform: Basic theory, J. Geophys. Res., 104, 5003-5013, 1999.
    • Mushayandebvu, M. F., Van Driel, P., Reid, A. B., and Fairhead, J. D.: Magnetic source parameters of two dimensional structures using extended Euler deconvolution, Geophysics, 66, 814-823, 2001.
    • Mushayandebvu, M. F., Lesur, V., Reid, A. B., and Fairhead, J. D.: Grid Euler deconvolution with constraints for 2-D structures, Geophysics, 69, 489-496, 2004.
    • Perez, C., Wijns, C., and Kowalczyk, P.: Theta map: Edge detection in magnetic data, Geophysics, 70, L39-L43, 2005.
    • Ravat, D.: Analysis of the Euler method and its applicability in environmental investigations, J. Environ. Eng. Geoph., 1, 229-238, 1996.
    • Reid, A. B., Allsop, J. M., Granser, H., Millet, A. J., and Somerton, I. W.: Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55, 80-91, 1990.
    • Reid, A. B., Ebbing, J., and Webb, S. J.: Avoidable Euler Errors- the use and abuse of Euler deconvolution applied to potential field, Geophys. Prospect., 62, 1162-1168, 2014.
    • Sailhac, P., Gibert, D., and Boukerbout, H.: The theory of the continuous wavelet transform in the interpretation of potential fields: A review, Geophys. Prospect., 57, 517-525, 2009.
    • Salem, A., Williams, S., Fairhead, J. D., Ravat, D., and Smith, R.: Tilt-depth method: a simple depth estimation method using first order magnetic derivatives, The Leading Edge, 26/12, 1502- 1505, 2007.
    • Silva, J. B. C. and Barbosa, V. C. F.: 3-D Euler deconvolution: Theoretical basis for automatically selecting good solutions, Geophysics, 68, 1962-1968, 2003.
    • Silva, J. B. C., Barbosa, V. C. F., and Medeiros, W. E.: Scattering, symmetry, and bias analysis of source position estimates in Euler deconvolution and its practical implications, Geophysics, 66, 1149-1156, 2001.
    • Singh, A. and Singh, U. K.: Wavelet analysis of residual gravity anomaly profiles: Modeling of Jharia coal basin, India, 86, 679- 686, 2015.
    • Stavrev, P. and Reid, A.: Degrees of homogeneity of potential fields and structural indices of Euler deconvolution, Geophysics, 72, L1-L12, 2007.
    • Stavrev, P. Y.: Euler deconvolution using di?erential similarity transformations of gravity or magnetic anomalies, Geophys. Prospect., 45, 207-246, 1997.
    • Thompson, D. T.: EULDPH: A new technique for making computer assisted depth estimates from magnetic data, Geophysics, 47, 31-37, 1982.
    • Verma, R. K. and Ghosh, D.: Gravity survey over Jharia coalfield, India. Geophys. Res. Bull., 12, 165-175, 1974.
    • Verma, R. K., Prasad, S. N., and Jha, B. P.: Magnetic Survey over Jharia Coal Field, Pure Appl. Geophys., 102, 124-133, 1973.
    • Verma, R. K., Majumdar, R., Ghosh, D., Ghosh, A., and Gupta, N. C.: Results of Gravity Survey over Raniganj Coalfield, India, Geophys. Prospect., 24, 19-30, 1976.
    • Verma, R. K., Bhuin, N. C., and Mukhopadhyay, M.: Geology, Structure and tectonics of Jharia Coal Field, India-A 3-D Model, Geoexploration, 17, 305-324, 1979.
    • Williams, S., Fairhead, J. D., and Flanagan, G.: Grid based Euler deconvolution: Completing the circle with 2-D constrained Euler, SEG Technical Program Expanded Abstracts, 22, 576-579, 2003.
    • Zhang, C., Mushayandebvu, M. F., Reid, A. B., Fairhead, J. D. and Odegard, M. E.: Euler deconvolution of gravity tensor gradient data, Geophysics, 65, 512-520, 2000.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from