Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chalikov, D. (2005)
Publisher: European Geosciences Union (EGU)
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, [PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO], Q, [SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph], [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, Science, Physics, QC1-999, QC801-809
International audience; A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baker, G. R., Meiron, D. I, and Orszag, S. A.: Generalized vortex methods for free-surface flow problems, J. Fluid Mech., 123, 477-501, 1982.
    • Banner, M. L. and Tian, X.: Energy and momentum growth rates in breaking water waves, Phys. Rev. Lett., 77, 2953-2956, 1996.
    • Banner, M. L. and Tian, X.: On the determination of the onset of breaking for modulating surface gravity waves, J. Fluid Mech., 367, 107-137, 1998
    • Belcher, S. and Hunt, J. C. R.: Turbulent shear flow over hills and waves, Ann. Rev. Fluid. Mech. 30, 507-538, 1998.
    • Benjamin, T. B. and Feir, J. E.: The disintegration of wavetrains in deep water, J. Fluid. Mech., 27, 417-430, 1967.
    • Bredmose, H., Brocchini, M., Peregine, D. H., and Tsais, L.: Experimental investigation and numerical modeling of steep forced water waves, J. Fluid Mech., 490, 217-249, 2003.
    • Chalikov, D.: The numerical simulation of wind-wave interaction, J. Fluid Mech., 87, 551-582, 1978.
    • Chalikov, D. V.: Numerical simulation of the boundary layer above waves, Bound. Layer Met., 1986, 34, 63-98, 1986.
    • Chalikov, D.: Interactive modeling of surface waves and boundary layer. Ocean Wave Measurements and Analysis, ASCE, Proceeding oh the third Intern. Symp. WAVES 97, 1525-1540, 1998 Chalikov, D. V. and Liberman, Yu.: Integration of primitive equations for potential waves, Izv. Sov. Atm. Ocean Phys., 27, 42-47, 1991.
    • Chalikov, D. and Sheinin, D.: Numerical modeling of surface waves based on principal equations of potential wave dynamics, Technical Note, NOAA/NCEP/OMB, 54, 1996.
    • Chalikov, D. and Sheinin, D.: Direct Modeling of One-dimensional Nonlinear Potential Waves, Nonlinear Ocean Waves, edited by: Perrie, W., Advances in Fluid Mechanics, 17, 207-258, 1998.
    • Chalikov, D. and Sheinin, D.: Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface, Journ. Comp. Phys., in press, 2005.
    • Craig, W. and Sulem, C.: Numerical Simulation of Gravity Waves, Journal of Comp. Phys., 108, 73-83, 1993.
    • Crapper, G. D.: An exact solution for progressive capillary waves of arbitrary amplitude, Journal of Fluid Mech., 96, 417-445, 1957.
    • Crapper, G. D.: Introduction to Water Waves, John Wiley, Chichester, 224, 1984.
    • Dimas, A. A. and Triantafyllou, G. S.: Nonlinear interaction of shear flow with a free surface, J. Fluid Mech., 260, 211-246, 1994.
    • Dold, J. W. and Peregrine, D. H.: A efficient boundary-integral method for steep unsteady water waves, in: Numerical Methods for Fluid Dynamics, edited by: Morton, K. W. and Baines, M. J., Oxford University Press, 1986.
    • Dold, J. W.: An Efficient Surface-Integral Algorithm Applied to Unsteady Gravity Waves, Journal of Comp. Phys., 103, 90-115, 1992.
    • Dommermuth, D. G., Yue, D. K. P., Rapp, R. J., Chan, F. S., and Melville, W. K.: Deep waterbreaking waves; a comparison between potential theory and experiments, J. Fluid Mech., 89, 432- 442, 1998.
    • Dommermuth, D. G.: The laminar interactions of a pair of vortex tubes with a free sur-face, J. Fluid Mech., 246, 91-115, 1993.
    • Dommermuth, D. G. and Yue, D. K. P.: A high-order spectral method for the study of nonlinear gravity waves, J. Fluid Mech., 184, 267-288, 1987.
    • Donelan, M.: Air-Sea Interaction,edited by: LeMehaute, B. and Hanes, C. M., John Wiley and Sons, New York, 9, 239-292, 1990.
    • Drennan, W. M., Hui, W. H., and Tenti, G.: Accurate calculation of Stokes wave near breaking, Continuum Mechanics and its applications, edited by: Graham, C. and Malik, S. K., Hemisphere Publishing, 1988.
    • Dyachenko, A. I. and Zakharov, V. E.: Is free surface hydrodynamics an integrable system?, Phys. Lett., 190 , (2), 144-148, 1994.
    • Dyachenko, A. I., Kuznetsov, E. A., Spector, M. D., and Zakharov, V. E.: Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping), Phys. Lett., A 221 (1-2), 73-79, 1996.
    • Dyachenko, A. I., Korotkevich, A. O., and Zakharov, V. E.: Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves, Phys. Rev. Lett., 92, 13 4501, 2004.
    • Eliassen, E. B., Machenhauer, B., and Rasmussen E.: On a numerical method for integration of the hydro-dynamical equations with a spectral representation of the horiszontal fields, Report 2, Institute for Teoretisk. Meteorologi, Kobenhavens Universitet, Copenhagen, 1970.
    • Farmer, J, Martinelli, L., and Jameson, A.: A Fourier method for solving nonlinear water-wave problems: application to solitarywave interactions, J. Fluid Mech., 118, 411-443, 1993.
    • Fenton, J. D and Rienecker, M. M.: A Fourier method for solving nonlinear water-wave problems: application to solitary-wave inter-actions, J. Fluid Mech., 118, 411-43, 1982.
    • Floryan, J. M. and Rasmussen H.: Numeri-cal methods for viscous flows with moving boundaries, Appl. Mech. Rev.,42, 323-341, 1989.
    • Fornberg, B.: A numerical method for conformal mapping, SIAM, J. Sci. Comput., 1, 386-400, 1980.
    • Fritts, M. J, Meinhold, M. J., and von Kerczek, C. H.: The calculation of nonlinear bow waves, Proc. 17th Symp. Naval Hydrodyn., , The Hague, Netherlands, 485-497, 1988.
    • Geernart, G. L.: Bulk parameterization for the wind stress and heat flux, in: Surface Waves and Fluxes, Vol. 1 - Current theory, edited by: Geernart, G. and Plant, W., Kluwer Acad. Publ., Netherlands, 91-172, 1990.
    • Gent P. R. and Taylor P. A.: A numerical model of the air flow above water waves, J. Fluid Mech., 77, 105-128, 1976.
    • Harlow F. H. and Welch, E.: Numerical calculation of timedependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2189, 1965.
    • Henderson D., Peregrine, D. H., and Dold, J. W.: Unsteady water waves modulations: fully nonlinear solutions and comparison with the nonlinear Shroedinger equation, Wave Motion, 29, 341- 361, 1999.
    • Hyman, J. M.: Numerical methods for tracking interfaces, PhysicaD., 12, 396-407, 1984.
    • Floryan, J. M. and Rasmussen, H.: Numerical methods for viscous flows with moving boundaries, Appl. Mech. Rev., 42, 323-341, 1989.
    • Hirt, C. W. and Nichols, B. D.: Volume of fluid method for the dynamics of free surface, J. Comput. Phys., 39, 201-225, 1981.
    • Kano, T. and Nishida, T.: Sur le ondes de surface de l'eau avec une justification mathematique des equations des ondes en eau peu profonde,J. Math, Kyoto Univ. (JMKYAZ), 19-2, 335-370, 1979.
    • Longuet-Higgins, M. S. and Cokelet, E. D.: The deformation of steep surface waves on water, I. A numerical method of computation, Proc. R. Soc. Lond., 350, 1-26, 1976.
    • Longuett-Higgins, M. S.: The crest instability of steep gravity waves, or how do short waves break? in: The Air-Sea Interface, Radio and Acoustic Sensing, Turbulence and Wave Dynamics, edited by: Donelan, M. A., Hui, W. H., Plant, W. J., University of Toronto Press Inc. Toronto, 1996.
    • Mastenbroek, C., Makin, V. K., Garat, M. H., and Giovanangeli, J. P.: Experimental evidence of the rapid distortion of the turbulence in the air flow over water waves J. Fluid. Mech., 318, 273-302, 1996.
    • Meirink, J. F. and Makin, V. K.: Modelling low-Reynolds-number effects in the turbulent air flow over water waves,J. Fluid. Mech., 2000.
    • Meiron, D. I., Orszag, S. A., and Israeli, M.: Applications of numerical conformal mapping, J. Comp. Physics, 40, 2, 345-360, 1981.
    • Magnusson, A. K., Donelan, M. A., and Drennan, W. M.: On estimating extremes in an Evolving Wave Field, Coastal Engineering, 36, 147-163, 1999.
    • Mei, C. C.: Numerical methods in water-wave diffraction and radiation, Ann. Rev. Fluid Mech., 10, 393-416, 1978.
    • Miyata, H.: Finite-difference simulation of breaking waves, J. Comput. Phys., 5, 179-214, 1986.
    • Noh, W. F. and Woodward, P.: SLIC (simple line interface calculation), in: Lecture Notes Phys., New York Springer-Verlag, 59, 330-340, 1976.
    • Orszag, S. A.: Transform method for calculation of vector coupled sums. Application to the spectral form of vorticity equation, Journal of Atmos Sci, 27, 890-895, 1970.
    • Prosperetti, A. and Jacobs, J. W.: A Numerical Method for Potential Flow with a Free Surface, J. Comp. Phys., 51, 365-386, 1983.
    • Roberts, A. J.: A stable and accurate numerical method to calculate the motion of a sharp interface between fluids, IMA J. Appl. Math., 1, 293-316, 1983.
    • Sheinin, D. and Chalikov, D.: Numerical Investigation of Wavenumber-Frequency Spectrum for 1-D Nonlinear Waves. Office of Naval, Research (ONR) Ocean Waves Workshop, 1994, 16-18 March, University of Arizona, Tucson, AZ, Extended abstract, 1994.
    • Sheinin, D. and Chalikov, D.: Hydrodynamical modeling of potential surface waves, in: Problems of hydrometeorology and environment on the eve of XXI century, Proceedings of international theoretical conference, St. Petersburg, 24-25 June 1999. St. Petersburg, Hydrometeoizdat, 305-337, 2000.
    • Song, J.-B. and Banner, M.: On determining the onset and strength of breaking for deep water waves. Part 1: Unforced irrotational wave groups, J. Phys. Oceanogr., 32, 9, 2541-2558, 2002.
    • Stokes, G. G.: On the theory of oscillatory waves, Trans. Cambridge Philos. Soc., 8, 441-445, Math. Phys. Pap., 1, 197-229, 1847.
    • Tanaka, M, Dold, J. W., Lewy, M., and Peregrine D. H.: Instability and breaking of a solitary wave, J. Fluid Mech. 187, 235-248, 1987.
    • Tanveer, S.: Singularities in water waves and Rayleigh-Taylor instability, Proc. R .Soc., Lond. A435, 137-158, 1991.
    • Tanveer, S.: Singularities in the classical Rayleigh-Taylor flow: formation and subsequent motion, Proc. R. Soc. Lond., A441, 501- 525, 1993.
    • Thompson, J. F, Warsi, Z. U. A., and Mastin, C. W.: Boundary-fitted coordinate systems for numerical solution of partial differential equations-a review, J. Comput. Phys., 47, 1-108, 1982.
    • Trease, H. E., Fritts, M. J., and Crowley, W. P.: Interactions between a free surface and a vortex sheet shed in the wake of a surfacepiercing plate, J. Fluid Mech.257, 691-721, 1990.
    • Tsai, W. T. and Yue, D. K. P.: Computation of nonlinear free-surface flows, Annu. Rev. Fluid Mech., 28, 249-278, 1996.
    • Vinje, T and Brevig, P.: Numerical simulation of breaking waves, Adv. Water Resources, 4, 77-82, 1981.
    • Watson, K. M. and West, B. J.: A transport-equation description of nonlinear ocean surface wave interactions, J. of Fluid Mech., 70, 815-826, 1975.
    • West, B. J., Brueckner K. A., and Janda, R. S.: A New Numerical Method for Surface Hydrodynamics, J. Geophys. Res., 92, C11, 11 803-11 824, 1987.
    • Whitney, J. C.: The numerical solution of unsteady free-surface flows by conformal mapping, in: Proc. Second Inter. Conf. on Numer. Fluid Dynamics, edited by: Holt, M., Springer-Verlag, 458-462, 1971.
    • Zakharov, V. E., Dyachenko, A. I., and Vasilyev, O. A.: New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface, European Journ. of Mech. B/Fluids, 21, 283-291, 2002.
    • Zakharov, V., Dias, F., and Pushkarev A.: One-dimensional wave turbulence, Physics Rep., 398, 1, 1-65, 2004.
    • Yuen, H. C. and Lake, B. M.: Nonlinear Dynamics of Deep-Water Gravity Waves, Adv. in Appl. Mech., 22, 67-229, 1982.
    • Yeung, M. A.: Numerical methods in free-surface flows, Ann. Rev. Fluid Mech., 14, 395-442, 1982.
    • Zhang, J., Hong, K., and Yue, D. K. P.: Effects of wavelength ratio on wave modeling, J. Fluid Mech., 248, 107-127, 1993.
  • No related research data.
  • No similar publications.