LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chen, J.-S.; Furumoto, J.; Yamamoto, M. (2014)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809
The pulsed, beamwidth-limited atmospheric radar suffers from a finite resolution volume, making it difficult to resolve the small-scale irregularity structure of refractive index (or clear-air turbulence) in the scattering region. Multi-receiver and multi-frequency imaging techniques were thus proposed to improve the spatial resolution of the measurements in the finite resolution volume. The middle and upper atmosphere radar (MUR; 34.85° N, 136.10° N) possesses the capabilities of 5 frequencies, ranging from 46 MHz to 47 MHz, and up to 25 receivers to carry out the imaging techniques. In this paper, we exhibit the three-dimensional (3-D) radar imaging utilizing five frequencies and 19 receivers of the MUR. The Capon method was employed for the process of imaging, and examinations of a wavy layer and turbulent structures were made, in which the spatial weighting effect on the imaging were mitigated beforehand. Information such as echo center and structure morphology in the resolution volume was then extracted. For example, the location distribution of echo centers could imply the traveling orientation of the wavy layer, which was correspondent with horizontal wind direction. Such information of wavy layer structure was more difficult to disclose without removal of the spatial weighting effect. This paper demonstrates an advanced application of 3-D radar imaging to some practical atmospheric phenomena.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article