Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Stanley, R. H. R.; Jenkins, W. J.; Doney, S. C.; Lott III, D. E. (2015)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: Q, Ecology, Science, QH540-549.5, QE1-996.5, Evolution, Geology, QH359-425, QH501-531, Biology (General), Life, QH301-705.5
Significant rates of primary production occur in the oligotrophic ocean, without any measurable nutrients present in the mixed layer, fueling a scientific paradox that has lasted for decades. Here, we provide a new determination of the annual mean physical supply of nitrate to the euphotic zone in the western subtropical North Atlantic. We combine a 3-year time series of measurements of tritiugenic 3He from 2003 to 2006 in the surface ocean at the Bermuda Atlantic Time-series Study (BATS) site with a sophisticated noble gas calibrated air–sea gas exchange model to constrain the 3He flux across the sea–air interface, which must closely mirror the upward 3He flux into the euphotic zone. The product of the 3He flux and the observed subsurface nitrate–3He relationship provides an estimate of the minimum rate of new production in the BATS region. We also apply the gas model to an earlier time series of 3He measurements at BATS in order to recalculate new production fluxes for the 1985 to 1988 time period. The observations, despite an almost 3-fold difference in the nitrate–3He relationship, yield a roughly consistent estimate of nitrate flux. In particular, the nitrate flux from 2003 to 2006 is estimated to be 0.65 ± 0.14 mol m−2 yr−1, which is ~40 % smaller than the calculated flux for the period from 1985 to 1988. The difference in nitrate flux between the time periods may be signifying a real difference in new production resulting from changes in subtropical mode water formation. Overall, the nitrate flux is larger than most estimates of export fluxes or net community production fluxes made locally for the BATS site, which is likely a reflection of the larger spatial scale covered by the 3He technique and potentially also by the decoupling of 3He and nitrate during the obduction of water masses from the main thermocline into the upper ocean. The upward nitrate flux is certainly large enough to support observed rates of primary production at BATS and more generally in the oligotrophic subtropical ocean.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient data-analysis, Global Biogeochem. Cy., 8, 65-80, 1994.
    • Benson, B. B. and Krause Jr., D., : Isotopic fractionation of helium during solution: a probe for the liquid state, J. Solut. Chem., 9, 895-909, 1980.
    • Billheimer, S. and Talley, L. D.: Near cessation of Eighteen Degree Water renewal in the western North Atlantic in the warm winter of 2011-2012, J. Geophys. Res.-Oceans, 118, 6838-6853, 2013.
    • Bourg, I. C. and Sposito, G.: Isotopic fractionation of noble gases by diffusion in liquid water: Molecular dynamics simulations and hydrologic applications, Geochim. Cosmochim. Acta, 72, 2237- 2247, 2008.
    • Brew, H. S., Moran, S. B., Lomas, M. W., and Burd, A. B.: Plankton community composition, organic carbon and thorium-234 particle size distributions, and particle export in the Sargasso Sea, J. Mar. Res., 67, 845-868, 2009.
    • Brix, H., Gruber, N., Karl, D. M., and Bates, N. R.: On the relationships between primary, net community, and export production in subtropical gyres, Deep-Sea Res. Pt. II, 53, 698-717, 2006.
    • Broecker, W. S. and Peng, T. H.: The distribution of bomb-produced tritium and radiocarbon at GEOSECS station 347 in the eastern North Pacific, Earth Planet. Sci. Lett., 49, 453-462, 1980.
    • Buesseler, K. O.: Do upper-ocean sediment traps provide an accurate record of particle flux?, Nature, 353, 420-423, 1991.
    • Buesseler, K. O., Lamborg, C., Cai, P., Escoube, R., Johnson, R., Pike, S., Masque, P., McGillicuddy, D., and Verdeny, E.: Particle fluxes associated with mesoscale eddies in the Sargasso Sea, Deep-Sea Res. Pt. II, 55, 1426-1444, 2008.
    • Cianca, A., Godoy, J. M., Martin, J. M., Perez-Marrero, J., Rueda, M. J., Llinas, O., and Neuer, S.: Interannual variability of chlorophyll and the influence of low-frequency climate modes in the North Atlantic subtropical gyre, Global Biogeochem. Cy., 26, Gb2002, doi:10.1029/2010gb004022, 2012.
    • Doney, S. C., Glover, D. M., and Jenkins, W. J.: A model function of the global bomb-tritium distribution in precipitation, 1960-1986, J. Geophys. Res., 97, 5481-5492, 1992.
    • Dong, S. F. and Kelly, K. A.: How Well Do Climate Models Reproduce North Atlantic Subtropical Mode Water?, J. Phys. Oceanogr., 43, 2230-2244, 2013.
    • Dugdale, R. C. and Goering, J. J.: Uptake of new and regenerated forms of nitrogen in primary productivity., Limnol. Oceanogr., 12, 196-206, 1967.
    • Dugdale, R. C., Wilkerson, F. P., Barber, R. T., and Chavez, F. P.: Estimating new production in the equatorial Pacific Ocean at 150 W, J. Geophys. Res., 97, 681-686, 1992.
    • Fawcett, S. E., Lomas, M. W., Ward, B. B., and Sigman, D. M.: The counterintuitive effect of summer-to-fall mixed layer deepening on eukaryotic new production in the Sargasso Sea, Global Biogeochem. Cy., 28, 86-102, 2014.
    • Fernandez-Castro, B., Anderson, L., Maranon, E., Neuer, S., Ausin, B., Gonzalez-Davila, M., Santana-Casiano, M., Cianca, A., Santana, R., Llinas, O., Rueda, M. J., and Mourino-Carballido, B.: Regional differences in modelled net production and shallow remineralization in the North Atlantic subtropical gyre, Biogeosciences, 9, 2831-2846, doi:10.5194/bg-9-2831-2012, 2012.
    • Fuchs, G., Roether, W., and Schlosser, P.: Excess 3He in the ocean surface layer, J. Geophys. Res., 92, 6559-6568, 1987.
    • Graham, A., Woolf, D. K., and Hall, A. J.: Aeration due to breaking waves. Part I: Bubble populations, J. Phys. Oceanogr., 34, 989- 1007, 2004.
    • Gruber, N., Keeling, C. D., and Stocker, T. F.: Carbon-13 constraints on the seasonal inorganic carbon budget at the BATS site in the northwestern Sargasso Sea, Deep-Sea Res. Pt. II, 45, 673-717, 1998.
    • Hansell, D. A., Carlson, C. A., and Schlitzer, R.: Net removal of major marine dissolved organic carbon fractions in the subsurface ocean, Global Biogeochem. Cy., 26, Gb1016, doi:10.1029/2011gb004069, 2012.
    • Harrison, W. G. and Harris, L. R.: Isotope-Dilution and Its Effects on Measurements of Nitrogen and Phosphorus Uptake by Oceanic Microplankton, Mar. Ecol.-Prog. Ser., 27, 253-261, 1986.
    • Jahne, B., Heinz, G., and Dietrich, W.: Measurement of the diffusion coefficients of sparingly soluble gases in water, J. Geophys. Res., 92, 10767-10776, 1987.
    • Jenkins, W. J.: Tritium and He-3 in the Sargasso Sea, J. Mar. Res., 38, 533-569, 1980.
    • Jenkins, W. J.: Nitrate flux into the euphotic zone near Bermuda, Nature, 331, 521-523, 1988a.
    • Jenkins, W. J.: Nitrate flux into the euphotic zone near Bermuda, Nature, 331, 521-523, 1988b.
    • Jenkins, W. J.: The use of anthropogenic tritium and 3He to study subtropical gyre ventilation and circulation, Philos. Tr. Soc. A(London), 325, 43-61, 1988c.
    • Jenkins, W. J. and Doney, S. C.: The subtropical nutrient spiral, Global Biogeochem. Cy., 17, 1110, doi:10.29/2003GB002085, 2003.
    • Jenkins, W. J. and Goldman, J. C.: Seasonal oxygen cycling and primary production in the Sargasso Sea, J. Mar. Res., 43, 465- 491, 1985.
    • Jenkins, W. J. and Stanley, R. H. R.: The Helium-3 flux gauge in the subtropical North Atlantic: What does it tell us about nutrient fluxes and new production in an oligotrophic gyre?, Ocean Sciences Meeting, Orlando, FL, 2008.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bullet. Am. Meteorol. Soc., 77, 437-471, 1996.
    • Kelly, K. A. and Dong, S.: The contributions of atmosphere and ocean to North Atlantic Subtropical Mode Water volume anomalies, Deep-Sea Res. Pt. II, 91, 111-127, 2013.
    • Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M., and Lipschultz, F.: Nitrate isotopic composition between Bermuda and Puerto Rico: Implications for N1 fixation in the Atlantic Ocean, Global Biogeochem. Cy., 22, Gb3014, doi:10.1029/2007gb003107, 2008.
    • Knapp, A. N., Hastings, M. G., Sigman, D. M., Lipschultz, F., and Galloway, J. N.: The flux and isotopic composition of reduced and total nitrogen in Bermuda rain, Mar. Chem., 120, 83-89, 2010.
    • Liang, J. H., Deutsch, C., McWilliams, J. C., Baschek, B., Sullivan, P. P., and Chiba, D.: Parameterizing bubble-mediated airsea gas exchange and its effect on ocean ventilation, Global Biogeochem. Cy., 27, 894-905, 2013.
    • Lipschultz, F.: A time-series assessment of the nitrogen cycle at BATS, Deep-Sea Res. Pt. II, 48, 1897-1924, 2001.
    • Lipschultz, F., Bates, N. R., Carlson, C. A., and Hansell, D. A.: New production in the Sargasso Sea: History and current status, Global Biogeochem. Cy., 16, 1001, doi:10.1029/2000gb001319, 2002.
    • Lomas, M. W., Steinberg, D. K., Dickey, T., Carlson, C. A., Nelson, N. B., Condon, R. H., and Bates, N. R.: Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation, Biogeosciences, 7, 57-70, doi:10.5194/bg-7-57-2010, 2010.
    • Lomas, M. W., Bates, N. R., Johnson, R. J., Knap, A. H., Steinberg, D. K., and Carlson, C. A.: Two decades and counting: 24-years of sustained open ocean biogeochemical measurements in the Sargasso Sea, Deep-Sea Res. Pt. II, 93, 16-32, 2013.
    • Lott, D. E. and Jenkins, W. J.: Advances in analysis and shipboard processing of tritium and helium samples, International WOCE Newsletter, 30, 27-30, 1998.
    • Luz, B. and Barkan, E.: Net and gross oxygen production from O2/Ar, O-17/O-16 and O-18/O-16 ratios, Aq. Microb. Ecol., 56, 133-145, 2009.
    • MacMahon, D.: Half-life evaluations for 3H, 90Sr, and 90Y, Appl.Radiat. Isotopes, 54, 1417-1419, 2006.
    • Maiti, K., Benitez-Nelson, C. R., Lomas, M. W., and Krause, J. W.: Biogeochemical responses to late-winter storms in the Sargasso Sea, III-Estimates of export production using Th-234 : U-238 disequilibria and sediment traps, Deep-Sea Res. Part I, 56, 875-891, 2009.
    • Maiti, K., Buesseler, K. O., Pike, S. M., Benitez-Nelson, C., Cai, P. H., Chen, W. F., Cochran, K., Dai, M. H., Dehairs, F., Gasser, B., Kelly, R. P., Masque, P., Miller, L. A., Miquel, J. C., Moran, S. B., Morris, P. J., Peine, F., Planchon, F., Renfro, A. A., van der Loeff, M. R., Santschi, P. H., Turnewitsch, R., Waples, J. T., and Xu, C.: Intercalibration studies of short-lived thorium-234 in the water column and marine particles, Limnol. Oceanogr. Meth., 10, 631-644, 2012.
    • Marra, J.: Approaches to the measurement of plankton production, Phytoplankton Productivity: Carbon Assimilation in Marine and Freshwater Ecosystems, edited by: Williams, P. J. L., Thomas, D. N., and Reynolds, C. S., Blackwell, Malden, MA, 31 pp., 2002.
    • Marra, J.: Net and gross productivity: weighing in with C-14, Aq. Microb. Ecol., 56, 123-131, 2009.
    • Martiny, A. C., Vrugt, J. A., Primeau, F. W., and Lomas, M. W.: Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean, Global Biogeochem. Cy., 27, 723-731, 2013.
    • Michaels, A. F., Bates, N. R., Buesseler, K. O., Carlson, C. A., and Knap, A. H.: Carbon system imbalances in the Sargasso Sea, Nature, 372, 537-540, 1994.
    • Nicholson, D., Emerson, S., and Khatiwala, S.: An inverse approach to estimate bubble-mediated air-sea gas flux from inert gas measurements, in: Proceedings of the 6th international symposium on gas transfer at water surfaces, edited by: Komori, S., Emerson, S., and Kurose, R., Kyoto University Press, Kyoto, Japan 2011..
    • Ono, S., Ennyu, A., Najjar, R. G., and Bates, N. R.: Shallow remineralization in the Sargasso Sea estimated from seasonal variations in oxygen, dissolved inorganic carbon and nitrate, DeepSea Res., 48, 1567-1582, 2001.
    • Ostlund, H. G., Dorsey, H. G., and Rooth, C. G.: GEOSECS North Atlantic Radiocarbon and Tritium Results, Earth Planet. Sci. Lett., 23, 69-86, 1974.
    • Owens, S. A., Buesseler, K. O., Lamborg, C. H., Valdes, J., Lomas, M. W., Johnson, R. J., Steinberg, D. K., and Siegel, D. A.: A new time series of particle export from neutrally buoyant sediments traps at the Bermuda Atlantic Time-series Study site, Deep-Sea Res. Part I, 72, 34-47, 2013.
    • Palter, J. B., Lozier, M. S., and Barber, R. T.: The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre, Nature, 437, 687-692, 2005.
    • Peterson, B. J.: Aquatic Primary Productivity and the C-14-CO2 Method - a History of the Productivity Problem, Annu. Rev. Ecol. Syst., 11, 359-385, 1980.
    • Price, J. F., Weller, R. A., and Pinkel, R.: Diurnal cycling - observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing, J. Geophys. Res.-Oceans, 91, 8411- 8427, 1986.
    • Qiu, B. and Huang, R. X.: Ventilation of the North Atlantic and North Paciifc: subduction versus obduction, J. Phys. Oceanogr., 25, 2374-2390, 1995.
    • Rooth, C. G. and Ostlund, H. G.: Penetration of tritium into the North Atlantic thermocline, Deep-Sea Res., 19, 481-492, 1972.
    • Scarratt, M. G., Marchetti, A., Hale, M. S., Rivkin, R. B., Michaud, S., Matthews, P., Levasseur, M., Sherry, N., Merzouk, A., Li, W. K. W., and Kiyosawa, H.: Assessing microbial responses to iron enrichment in the Subarctic Northeast Pacific: Do microcosms reproduce the in situ condition?, Deep-Sea Res. Pt. II, 53, 2182- 2200, 2006.
    • Singh, A., Lomas, M. W., and Bates, N. R.: Revisiting N-2 fixation in the North Atlantic Ocean: Significance of deviations from the Redfield Ratio, atmospheric deposition and climate variability, Deep-Sea Res. Pt. II, 93, 148-158, 2013.
    • Spitzer, W. S. and Jenkins, W. J.: Rates of vertical mixing, gasexchange and new production - estimates from seasonal gas cycles in the upper ocean near Bermuda, J. Mar. Res., 47, 169-196, 1989.
    • Stanley, R. H. R., Jenkins, W. J., and Doney, S. C.: Quantifying seasonal air-sea gas exchange processes using noble gas timeseries: A design experiment, J. Mar. Res., 64, 267-295, 2006.
    • Stanley, R. H. R., Baschek, B., Lott, D. E., and Jenkins, W. J.: A new automated method for measuring noble gases and their isotopic ratios in water samples, Geochem. Geophys. Geosys., 10, Q05008, doi:10.1029/2009GC002429, 2009a.
    • Stanley, R. H. R., Jenkins, W. J., Doney, S. C., and Lott III, D. E.: Noble Gas Constraints on Air-Sea Gas Exchange and Bubble Fluxes, J. Geophys. Res.-Oceans, 114, C11020, doi:10.1029/2009JC005396, 2009b.
    • Stanley, R. H. R., Doney, S. C., Jenkins, W. J., and Lott, III, D. E.: Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site, Biogeosciences, 9, 1969-1983, doi:10.5194/bg-9- 1969-2012, 2012.
    • Stark, S., Jenkins, W. J., and Doney, S. C.: Deposition and recirculation of tritium in the North Pacific Ocean, J. Geophys. Res., 109, C06009, doi:10.1029/2003JC002150, 2004.
    • Steinberg, D. K., Carlson, C. A., Bates, N. R., Johnson, R. J., Michaels, A. F., and Knap, A. H.: Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry, Deep-Sea Res. Pt. II, 48, 1405-1447, 2001.
    • Steinberg, D. K., Lomas, M. W., and Cope, J. S.: Long-term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling, Global Biogeochem. Cy., 26, Gb1004, doi:10.1029/2010gb004026, 2012.
    • Stewart, G., Moran, S. B., Lomas, M. W., and Kelly, R. P.: Direct comparison of Po-210, Th-234 and POC particle-size distributions and export fluxes at the Bermuda Atlantic Time-series Study (BATS) site, J. Environ. Radioact., 102, 479-489, 2011.
    • Talley, L. D.: Shallow, intermediate, and deep overturning components of the global heat budget, J. Phys. Oceanogr., 33, 530-560, 2003.
    • Tempest, K. E. and Emerson, S.: Kinetic isotopic fractionation of argon and neon during air-water gas transfer, Mar. Chem., 153, 39-47, 2013.
    • Tyroller, L., Brennwald, M. S., Maechler, L., Livingstone, D. M., and Kipfer, R.: Fractionation of Ne and Ar isotopes by molecular diffusion in water, Geochim. Cosmochim. Acta, 136, 60-66, 2014.
    • Weiss, W. M. and Roether, W.: The rates of tritium input to the world oceans, Earth Planet. Sci. Lett., 49, 435-446, 1980.
    • Worthington, L. V.: Negative oceanic heat flux as a cause of watermass formation, J. Phys. Oceanogr., 2, 205-211, 1972.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Using Ocean Tritium/Helium-...

Cite this article