Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mundava, C.; Helmholz, P.; Schut, A. G. T.; Corner, R.; McAtee, B.; Lamb, D. W. (2014)
Languages: English
Types: Article
The objective of this paper is to test the relationships between Above Ground Biomass (AGB) and remotely sensed vegetation indices for AGB assessments in the Kimberley area in Western Australia. For 19 different sites, vegetation indices were derived from eight Landsat ETM+ scenes over a period of two years (2011–2013). The sites were divided into three groups (Open plains, Bunch grasses and Spinifex) based on similarities in dominant vegetation types. Dry and green biomass fractions were measured at these sites. Single and multiple regression relationships between vegetation indices and green and total AGB were calibrated and validated using a "leave site out" cross validation. Four tests were compared: (1) relationships between AGB and vegetation indices combining all sites; (2) separate relationships per site group; (3) multiple regressions including selected vegetation indices per site group; and (4) as in 3 but including rainfall and elevation data. Results indicate that relationships based on single vegetation indices are moderately accurate for green biomass in wide open plains covered with annual grasses. The cross-validation results for green AGB improved for a combination of indices for the Open plains and Bunch grasses sites, but not for Spinifex sites. When rainfall and elevation data are included, cross validation improved slightly with a Q2 of 0.49–0.72 for Open plains and Bunch grasses sites respectively. Cross validation results for total AGB were moderately accurate (Q2 of 0.41) for Open plains but weak or absent for other site groups despite good calibration results, indicating strong influence of site-specific factors.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from