LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chias, P.; Abad, T.; Echeverria, E. (2013)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: TA1-2040, T, TA1501-1820, Applied optics. Photonics, Engineering (General). Civil engineering (General), Technology
Remote sensing techniques in Archaeology are increasingly essential components of the methodologies used in archaeological and architectural researches. They allow uncovering unique forgotten data which are unobtainable using traditional excavation techniques, mainly because their precise location is lost. These data are still important since they can help to prevent flood effects inside the ancient building cellars and basements, as it happened periodically in El Escorial. Wide ancient drainage galleries run more than one hundred feet downhill outside the building, ensuring that rainwater and springs were adequately drained. Nowadays their plans are lost, and the lack of documents related both to the ancient water supply and drainage systems become an impediment to solve the stains of damp on the stone masonry walls and vaults, and even other occasional flooding effects. In this case, nondestructive techniques were needed to find the ancient underground passages in order to preserve the integrity of the building and its current activities. At a first stage oblique aerial infrared images taken from a helium barrage balloon helped to find easily, quickly and cheaply the buried masonry structures. Secondly, radar pulses were particularly interesting to image the subsurface as they were valuable means of assessing the presence and amount of both soil water and buried structures. The combination of both techniques proved to be an accurate and low-cost way to find the ancient drainage systems. Finally, results were produced by means of open source software.
  • No references.
  • No related research data.
  • No similar publications.