LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ding, J. Y. (2013)
Languages: English
Types: Article
Subjects:
This note illustrates, in the context of Brutsaert–Nieber (1977) model: −dQ/dt = aQb, the utility of a newly rediscovered inverse fractional power (IFP) transform of the flow rates. This method of streamflow recession analysis dates back a half-century. The IFP transform Δb on an operand Q is defined as Δb Q = 1/Qb-1. Brutsaert–Nieber model by IFP transform thus becomes: ΔbQ(t) = ΔbQ(0) + (b−1) at, if b ≠ 1. The IFP transformed recession curve appears as a straight line on a semi-IFP plot. The method has both the advantage of being independent of the size of computational time step, and the disadvantage of being depending on the parameter b value. This is used to calibrate the Brutsaert–Nieber recession flow model in which b is a slope (or shape) parameter, and a is an intercept (or a scale parameter). It is applied to four observed events on the Spoon River in Illinois (4237 km2). The results show that the IFP transform method gives a narrower range of parameter b values than the regression method in a recession plot. Theoretically, an IFP transformed recession curve for large watersheds falls between those performed by the reciprocal of the cubic root (RoCR) transform and the reciprocal of the square root (RoSR) one. In general, the forgotten IFP transform method merits a fresh look, especially for hillslopes and zero-order catchments, the building blocks of a watershed system. In particular, because of its origin in hillslope hydrology, the 1-parameter RoSR transform need be falsified or verified for application to headwater catchments.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from