Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Charman, D.J.; Beilman, D.W.; Blaauw, M.; Booth, R.K.; Brewer, S.; Chambers, F.M.; Christen, J.A.; Gallego-Sala, A.; Harrison, S.P.; Hughes, P.D.M.; Jackson, S.T.; Korhola, A.; Mauquoy, D.; Mitchell, F.J.G.; Prentice, I.C.; Van Der Linden, M.; De Vleeschouwer, F.; Yu, Z. C.; Alm, J.; Bauer, I.E.; Corish, Y.M.C.; Garneau, M.; Hohl, V.; Huang, Y.; Karofeld, E.; Le Roux, G.; Loisel, J.; Moschen, R.; Nichols, J.E.; Nieminen, T.M. ... view all 42 authors View less authors (2013)
Publisher: European Geosciences Union
Languages: English
Types: Article
Subjects: DOAJ:Earth and Environmental Sciences, DOAJ:Earth Sciences, QH540-549.5, QE1-996.5, Ice, BOG GROWTH, Geology, QH501-531, ORGANIC-MATTER ACCUMULATION, CYCLE, Life, Ecology, Carbon, HUMAN IMPACT, ENVIRONMENTAL-CHANGE, MODEL, Peat, Ecologie, Environnement, STABLE CARBON, Climate, Evolution, DOAJ:Biology, QH301-705.5, [ SDV.EE ] Life Sciences [q-bio]/Ecology, environment, Q, WESTERN CANADA, LATE-HOLOCENE, Science, DOAJ:Biology and Life Sciences, QH359-425, 1172 Environmental sciences, Age, Biology (General), ICE-AGE, Little
ddc: ddc:570
International audience; Peatlands are a major terrestrial carbon store and a persistent natural carbon sink during the Holocene, but there is considerable uncertainty over the fate of peatland carbon in a changing climate. It is generally assumed that higher temperatures will increase peat decay, causing a positive feedback to climate warming and contributing to the global positive carbon cycle feedback. Here we use a new extensive database of peat profiles across northern high latitudes to examine spatial and temporal patterns of carbon accumulation over the past millennium. Opposite to expectations, our results indicate a small negative carbon cycle feedback from past changes in the long-term accumulation rates of northern peatlands. Total carbon accumulated over the last 1000 yr is linearly related to contemporary growing season length and photosynthetically active radiation, suggesting that variability in net primary productivity is more important than decomposition in determining long-term carbon accumulation. Furthermore, northern peatland carbon sequestration rate declined over the climate transition from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA), probably because of lower LIA temperatures combined with increased cloudiness suppressing net primary productivity. Other factors including changing moisture status, peatland distribution, fire, nitrogen deposition, permafrost thaw and methane emissions will also influence future peatland carbon cycle feedbacks, but our data suggest that the carbon sequestration rate could increase over many areas of northern peatlands in a warmer future.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abe-Ouchi A. and Harrison, S. P.: Constraining the carbon-cycle feedback using palaeodata: the PalaeoCarbon Modelling Intercomparison Project, EOS 90, p. 140, 2009.
    • 10 Ahn, J., Brook, E. J., Mitchell, L., Rosen, J., McConnell, J. R., Taylor, K., Etheridge, D., and Rubino, M.: Atmospheric CO2 over the last 1000 yr: a high-resolution record from the west antarctic ice sheet (WAIS) divide ice core, Global Biogeochem. Cy., 26, GB2027, doi:10.1029/2011GB004247, 2012.
    • Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K., Mat15 sumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric lifetime of fossil fuel carbon dioxide, Annu. Rev. Earth Pl. Sc., 37, 117-34, 2009.
    • Bauer, I. E., Bhatti J. S., Swanston, C., Wieder, R. K., Preston, C. M.: Organic matter accumulation and community change at the peatland-upland interface: inferences from 14C and 210Pb dated profiles, Ecosystems, 12, 636-653, 2009.
    • 20 Beilman, D. W., MacDonald, G. M., Smith, L. C., Reimer, P. J.: Carbon accumulation in peatlands of west siberia over the last 2000 yr, Global Biogeochem. Cy., 23, GB1012, doi:10.1029/2007gb003112, 2009.
    • Belyea, L. R. and Baird, A. J.: Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development, Ecol. Monogr., 76, 299-322, 2006.
    • 25 Blaauw, M. and Christen, J. A.: Radiocarbon peat chronologies and environmental change, Appl. Statist., 54, 805-816, 2005.
    • Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Analysis, 6, 457-474, 2011.
    • Clymo, R. S.: The limits to peat bog growth, Philos. T. Roy. Soc. Lon. B, 303, 605-654, 1984.
    • 14347 Cox, P. and Jones, C.: Illuminating the modern dance of climate and CO2, Science, 321, 1642- 1644, 2008.
    • de Vleeschouwer, F., Piotrowska, N., Sikorski, J., Pawlyta, J., Cheburkin, A., Le Roux, G., Lamentowicz, M., Fagel, N., and Mauquoy, D.: Multiproxy evidence of “little ice age” 5 palaeoenvironmental changes in a peat bog from northern poland, Holocene, 19, 625-637, 2009.
    • de Vleeschouwer, F., Sikorski, J., and Fagel, N.: Development of lead-210 measurement in peat using polonium extraction, a procedural comparison, Geochronometria, 36, 108-115, 2010.
    • de Vleeschouwer, F., Pazdur, A., Luthers, C., Streel, M., Mauquoy, D., Wastiaux, C., Le 10 Roux, G., Moschen, R., Blaauw, M., Pawlyta, J., Sikorski, J., and Piotrowska, N.: A millennial record of environmental change in peat deposits from the misten bog (East Belgium).
    • Quatern. Int., 268, 44-57, 2012.
    • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva 15 Dias, P. L., Wofsy, S. C., and Zhang, X.: Couplings between changes in the climate system and biogeochemistry, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S. et al., Cambridge University Press, Cambridge, 499-587, 2007.
    • 20 Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M. J., Callaghan, T. V., and Aerts, R.: Carbon respiration from subsurface peat accelerated by climate warming in the subarctic, Nature, 460, 616-619, 2009.
    • Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M., Leuenberger, M., Joos, F., Fischer, H., and Stocker, T. F.: Stable isotope constraints on Holocene carbon cycle changes 25 from an Antarctic ice core, Nature, 461, 507-510, 2009.
    • Finkelstein, S. A. and Cowling, S. A.: Wetlands, temperature, and atmospheric CO2 and CH4 coupling over the past two millennia, Global Biogeochem. Cy., 25, GB1002, doi:10.1029/2010GB003887, 2011.
    • Frank, D. C., Esper, J., Raible, C. C., Bu¨ ntgen, U., Trouet, V., Stocker, B., and Joos, F. : Ensem30 ble reconstruction constraints on the global carbon cycle sensitivity to climate, Nature, 63, 527-530, 2010.
    • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.- G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison, J. Climate, 19, 3337-3353, 2006.
    • 5 Frolking, S. and Roulet, N. T.: Holocene radiative forcing impact of northern peatland carbon accumulation and methane emission, Glob. Change Biol., 13, 1079-1088, 2007.
    • Gagen, M., Zorita, E., McCarroll, D., Young, G. H. F., Grudd, H., Jalkanen, R., Loader, N. J., Robertson, I., and Kirchhefer, A.: Cloud response to summer temperatures in Fennoscandia over the last thousand years, Geophys. Res. Lett., 38, L05701, doi:10.1029/2010gl046216, 10 2011.
    • Gallego-Sala, A. V. and Prentice, I. C.: Blanket peat biome endangered by climate change, Nature Clim. Change, doi:10.1038/nclimate1672, 2012.
    • Gallego-Sala, A. V., Clark, J. M., House, J. I., Orr, H. G., Prentice, I. C., Smith, P., Farewell, T., and Chapman, S. J.: Application of a global bioclimatic envelope model to assess the impact 15 of climate change on the distribution of blanket peatlands in Great Britain, Climate Res. 34, C911, doi:10.3354/cr00911, 2010.
    • Gorham, E.: Northern peatlands, role in the carbon cycle and probable responses to climatic warming, Ecol. Appl., 1, 182-195, 1991.
    • Grove, J. M.: Little Ice Ages. Ancient and Modern, Routledge, London, 2004.
    • 20 Harrison, S. P., Prentice, I. C., Barboni, D., Kohfeld, K. E., Ni, J., and Sutra, J. P. : Ecophysiological and bioclimatic foundations for a global plant functional classification, J. Veg. Sci., 21, 300-317, 2010.
    • Hua, Q. and Barbetti, M.: Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes, Radiocarbon, 46, 1273-1298, 2004.
    • 25 Hughes, P. D. M., Blundell, A., Charman, D. J., Bartlett, S., Daniell, J. R. G., Wojatschke, A., and Chambers, F. M.: An 8500 cal. year multi-proxy climate record from a bog on Bonavista North Peninsula, Newfoundland: contributions of melt-water discharge and solar forcing, Quaternary Sci. Rev., 25, 1208-1227, 2006.
    • Ise, T., Dunn, A. L., Wofsy, S. C., Moorcroft, P. R.: High sensitivity of peat decomposition to 30 climate change through water-table feedback, Nat Geosci., 1, 763-766, 2008.
    • Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W. R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D.: Palaeoclimate, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S. et al., Cambridge, University Press, Cambridge, 433-497, 2007.
    • Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., 5 Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., and Marotzke, J.: Climate and carboncycle variability over the last millennium, Clim. Past, 6, 723-737, doi:10.5194/cp-6-723-2010 , 2010.
    • 10 Kaplan, J. O., Bigelow, N. H., Bartlein, P. J., Christensen, T. R., Cramer, W., Harrison, S. P., Matveyeva, N. V., McGuire, A. D., Murray, D. F., Prentice, I. C., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev, A. A., Brubaker, L. B., Edwards, M.
    • E., Lozhkin, A. V., and Ritchie, J.: Climate change and Arctic ecosystems II: Modeling, palaeodata-model comparisons, and future projections, J. Geophys. Res. Atmos., 108, 8171, 15 doi:10.1029/2002JD002559, 2003.
    • Kremenetski, K. V., Velichko, A. A., Borisova, O. K., MacDonald, G. M., Smith, L. C., Frey, K. E., and Orlova, L. A.: Peatlands of the west siberian lowlands: current knowledge on zonation, carbon content and late quaternary history, Quaternary Sci. Rev. 22, 703-723, 2003.
    • Le Roux, G., Aubert, D., Stille, P., Krachler, M., Kober, B., Cheburkin, A., Bonani, G., and 20 Shotyk, W.: Recent atmospheric Pb deposition at a rural site in southern germany assessed using a peat core and snowpack, and comparison with other archives, Atmos. Environ., 39, 6790-6801, 2005.
    • Loisel, J., Gallego-Sala, A. V., and Yu, Z.: Global-scale pattern of peatland sphagnum growth driven by photosynthetically active radiation and growing season length, Biogeosciences 25 Discuss., 9, 2169-2196, doi:10.5194/bgd-9-2169-2012 , 2012.
    • MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y. W., Smith, L. C., and Velichko, A. A.: Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations, Science, 314, 285-288.
    • Mann, M. E., Zhang, Z. H., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and 30 Ni, F. B.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, P. Natl. Acad. Sci. USA, 105, 13252-13257, 2008.
    • Mann, M. E., Zhang, Z. H., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F. B.: Global signatures and dynamical origins of the little ice age and medieval climate anomaly, Science, 326, 1256-1260, 2009.
    • Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S. P., Higuera, P. E., Joos, F., 5 Power, M. J., and Prentice, I. C.: Climate and human influences on global biomass burning over the past two millennia, Nat. Geosci., 1, 697-702, 2008.
    • Mauquoy, D., Engelkes, T., Groot, M. H. M., Markesteijn, F., Oudejans, M. G., van der Plicht, J., and van Geel, B.: High-resolution records of late Holocene climate change and carbon accumulation in two North-West European ombrotrophic peat bogs, Palaeogeogr. Palaeoecol., 10 186, 275-310, 2002.
    • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver A. J., and Zhao, Z.-C.: Global climate projections, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergov15 ernmental Panel on Climate Change, edited by: Solomon, S. et al., Cambridge Univ. Press, Cambridge, 747-845, 2007.
    • Moschen, R., Ku¨ hl, N., Rehberger, I., and L u¨cke, A.: Stable carbon and oxygen isotopes in sub-fossil sphagnum: assessment of their applicability for palaeoclimatology, Chem. Geol., 259, 262-272, 2009.
    • 20 Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Effects of anthropogenic land cover change on the carbon cycle of the last millennium, Global Biogeochem. Cy., 23, GB4001, doi:10.1029/2009GB003488, 2009.
    • Prentice, I. C., Sykes, M. T., and Cramer, W.: A simulation model for the transient effects of climate change on forest landscapes, Ecol. Model., 65, 51-70, 1993.
    • 25 Rausch, N., Ukonmaanaho, L., Nieminen, T. M., Krachler, M., and Shotyk, W.: Comparison of atmospheric deposition of copper, nickel, cobalt, zinc and cadmium recorded by Finnish peat cores with monitoring data and emission records, Environ. Sci. Technol., 39, 5989-5998, 2005.
    • Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., 30 Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeye, C. E.: IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 year cal BP, Radiocarbon, 51, 1111-1150, 2009.
    • Sillasoo, U., Mauquoy, D., Blundell, A., Charman, D., Blaauw, M., Daniell, J. R. G., Toms, P., Newberry, J., Chambers, F. M., and Karofeld, E.: Peat multi-proxy data from m a¨ nnikja¨ rve bog 5 as indicators of late holocene climate changes in estonia, Boreas, 36, 20-37, 2007.
    • Swindles, G. T., Blundell, A., Roe, H. M., and Hall, V. A.: A 4500-year proxy climate record from peatlands in the north of ireland: the identification of widespread summer “drought phases”?, Quaternary Sci. Rev., 29, 1577-1589, 2010.
    • Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., and Zimov, S.: Soil 10 organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem.
    • Cy., 23, GB2023, doi:10.1029/2008GB003327, 2009.
    • Ukonmaanaho, L., Nieminen, T. M., Rausch, N., Cheburkin, A., Le Roux, G., and Shotyk, W.: Recent organic matter accumulation in relation to some climatic factors in ombrotrophic peat bogs near heavy metal emission sources in Finland, Global Planet. Change, 53, 259-268, 15 2006.
    • V a¨liranta M., Korhola, A., Seppa, H., Tuittila, E. S., Sarmaja-Korjonen, K., Laine, J., and Alm, J.: High resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late holocene - a quantitative approach, Holocene, 17, 1093-1107, 2007.
    • van der Linden, M. and van Geel, B.: Late holocene climate change and human impact recorded 20 in a South Swedish ombrotrophic peat bog, Palaeogeogr. Palaeoecol., 240, 649-667, 2006.
    • Palaeoecol., 258, 1-27, 2008.
    • Vitt, D. H., Halsey, L. A., Bauer, I. E., and Campbell, C.: Spatial and temporal trends in carbon 25 storage of peatlands of continental western canada through the holocene, Can. J. Earth Sci., 37, 683-693, 2000.
    • Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and permafrost into a dynamic global vegetation model: 1. evaluation and sensitivity of physical land surface processes, Global Biogeochem. Cy., 23, GB3014, doi:10.1029/2008GB003412, 2009.
    • 30 Young, G. H. F., McCarroll, D., Loader, N. J., and Kirchhefer, A. J.: A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes, Holocene, 20, 315-324, 2010.
    • Yu, Z., Beilman, D. W., and Jones, M. C.: Sensitivity of northern peatland carbon dynamics to holocene climate change, Geoph. Monogr. Series, 184, 55-69, doi:10.1029/2008GM000822, 2009.
    • Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402, doi:10.1029/2010GL043584, 2010.
    • Yu, Z. C.: Holocene carbon flux histories of the world's peatlands: global carbon-cycle implications, Holocene, 21, 761-774, 2011.
    • Yu, Z. C., Vitt, D. H., Campbell, I. D., and Apps, M. J.: Understanding holocene peat accumulation pattern of continental fens in western canada, Can. J. Botany, 81, 267-282, 2003.
  • No related research data.
  • No similar publications.