LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Lei; Liu, Huizhi; Sun, Jihua; Shao, Yaping (2016)
Languages: English
Types: Article
Subjects:
Eddy covariance measurements from 2012 to 2015 were used to investigate the interannual variation in carbon dioxide exchange and its control over an alpine meadow on the southeast margin of the Tibetan Plateau. The annual net ecosystem exchange (NEE) from 2012 to 2015 was −114.2, −158.5, −159.9 and −212.6 g C m−2 yr−1 and generally decreased with the mean annual air temperature (MAT). An exception occurred in 2014, which had the highest MAT. This was attributed to higher ecosystem respiration (RE) and similar gross primary production (GPP) in 2014 because the GPP increased with MAT but became saturated due to the photosynthesis capacity limit. In the spring (March to May) of 2012, lower air temperature (Ta) and drought events delayed grass germination and reduced GPP. In the late wet season (September to October) of 2012 and 2013, the lower Ta in September and its negative effects on vegetation growth caused earlier grass senescence and significantly lower GPP. This indicates that the seasonal pattern of Ta greatly affected the annual total GPP, which is consistent with the result of the homogeneity-of-slopes model. The model shows that the climatic seasonal variation explained 48.6 % of the GPP variability, and the percentage of climatic interannual variation and the ecosystem functional change were 9.7 % and 10.6 %, respectively.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from