Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart (2017)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha−1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity – twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Albrecht, W. A.: Loss of soil organic matter and its restoration, in: United States Department of Agriculture, Soils and Men: Yearbook of Agriculture 1938, US Government Printing Office, 347- 360, 1938.
    • Allison, S. D. and Martiny, J. B. H.: Resistance, resilience, and redundancy in microbial communities, P. Natl. Acad. Sci. USA, 105, 11512-11519, 2008.
    • Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336-340, 2010.
    • Baisden, W. T., Parfitt, R. L., Ross, C., Schipper, L. A., and Canessa, S.: Evaluating 50 years of time-series soil radiocarbon data: toward routine calculation of robust C residence times, Biogeochemistry, 112, 129-137, 2013.
    • Baldock, J. A.: Improving the productivity and sustainability of crop rotations through nitrogen management, Grains Research and Development Corporation Final Report UA247, 33 pp., 1998.
    • Baldock, J. A., Oades, J. M., Nelson, P. N., Skene, T. M., Golchin, A., and Clarke, P.: Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy, Aust. J. Soil Res., 35, 1061-1084, 1997.
    • Baldock, J. A., Sanderman, J., Macdonald, L. M., Puccini, A., Hawke, B., Szarvas, S., and McGowan, J.: Quantifying the allocation of soil organic carbon to biologically significant fractions, Soil Res., 51, 561-576, 2013a.
    • Baldock, J. A., Hawke, B., Sanderman, J., and Macdonald, L. M.: Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra, Soil Res., 51, 577-595, 2013b.
    • Barré, P., Fernandez-Ugalde, O., Virto, I., Velde, B., and Chenu, C.: Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects, Geoderma, 23, 382-395, 2014.
    • Blagodatskaya, Å. and Kuzyakov, Y.: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review, Biol. Fert. Soils, 45, 115-131, 2008.
    • Blanco-Canqui, H., Shapiro, C. A., Wortmann, C. S., Drijber, R. A., Mamo, M., Shaver, T. M., and Ferguson, R. B.: Soil organic carbon: The value to soil properties, J. Soil Water Conserv., 68, 129A-134A, 2013.
    • Bustamante, M., Robledo-Abad, C., Harper, R., Mbow, C., Ravindranat, N. H., Sperling, F., Haberl, H., Siqueira Pinto, A., and Smith, P.: Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector, Global Change Biol., 20, 3270-3290, 2014.
    • Cambardella, C. A. and Elliott, E. T.: Particulate soil organic-matter changes across a grassland cultivation sequence, Soil Sci. Soc. Am. J., 56, 777-783, 1992.
    • Chappell, A., Baldock, J., and Sanderman, J.: The global significance of omitting soil erosion from soil organic carbon cycling schemes, Nature Climate Change, 6, 187-191, doi:10.1038/ncimate2829, 2015.
    • Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988-995, 2013.
    • Cotrufo, M. F., Soong J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., and Parton, W. J.: Formation of soil organic matter via biochemical and physical pathways of litter mass loss, Nat. Geosci., 8, 776-779, 2015.
    • Currie, K. I., Brailsford, G., Nichol, S., Gomez, A., Sparks, R., Lassey, K. R., and Riedel, K.: Tropospheric 14CO2 at Wellington, New Zealand: the world's longest record, Biogeochemistry, 104, 5-22, 2011.
    • Dijkstra, F. A. and Cheng, W.: Interactions between soil and tree roots accelerate long-term soil carbon decomposition, Ecol. Lett., 10, 1046-1053, 2007.
    • Fang, C., Smith, P., Smith, J. U., and Moncrieff, J. B.: Incorporating microorganisms as decomposers into models to simulate soil organic matter decomposition, Geoderma, 129, 139-146, 2005.
    • FAO: World reference base for soil resources, World soil resources reports No. 84, Rome, Italy, 1998.
    • Fallon, S. J., Fifield, L. K., and Chappell, J. M.: The next chapter in radiocarbon dating at the Australian National University: status report on the single stage AMS, Nucl. Instrum. Meth. B., 268, 898-901, 2010.
    • Fontaine, S., Bardoux, G., Abbadie, L., and Mariotti, A.: Carbon input to soil may decrease soil carbon content, Ecol. Lett., 7, 314- 320, 2004.
    • Grace, P. R., Oades, J. M., Keith, H., and Hancock, T. W.: Trends in wheat yields and soil organic carbon in the Permanent Rotation Trial at the Waite Agricultural Research Institute, South Australia, Aust. J. Exp. Agr., 35, 857-864, 1995.
    • Janzen, H. H.: The soil carbon dilemma: shall we hoard it or use it?, Soil Biol. Biochem., 38, 419-424, 2006.
    • Jenkinson, D. S.: The turnover of organic carbon and nitrogen in soil, Phil. Trans. R. Soc. B, 329, 361-368, 1990.
    • Jenny, H.: Factors of soil formation, McGraw-Hill, New York, 1941.
    • Kiem R. and Kogel-Knaber, I.: Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils, Soil Biol. Biochem., 35, 101-118, 2003.
    • Kirkby, C. A., Richardson, A. E., Wade, L. J., Passioura, J. B., Batten, G. D., Blanchard, C., and Kirkegaard, J. A.: Nutrient availability limits carbon sequestration in arable soils, Soil Biol. Biochem., 68, 402-409, 2014.
    • Kong, A. Y., Six, J., Bryant, D. C., Denison, R. F., and Van Kessel, C.: The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems, Soil Sci. Soc. Am. J., 69, 1078-1085, 2005.
    • Kraffczyk, I., Trolldenier, G., and Beringer, H.: Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms, Soil Biol. Biochem., 16, 315-322, 1984.
    • Lajtha, K., Townsend, K. L., Kramer, M. G., Swanston, C., Bowden, R. D., and Nadelhoffer, K.: Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems, Biogeochemistry, 119, 341-360, 2014.
    • Lam, S. K., Chen, D., Mosier, A. R., and Roush, R.: The potential for carbon sequestration in Australian agricultural soils is technically and economically limited, Sci. Rep., 3, 2179, 2013.
    • Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., and Steinbeiss, S.: Plant diversity increases soil microbial activity and soil carbon storage, Nat. Commun., 6, 6707, 2015.
    • Lawrence, C. R., Neff, J. C., and Schimel, J. P.: Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment, Soil Biol. Biochem., 41, 1923- 1934, 2009.
    • Liang, C. and Balser, T. C.: Preferential sequestration of microbial carbon in subsoils of a glacial-landscape toposequence, Dane County, WI, USA, Geoderma, 148, 113-119, 2008.
    • Liang, C., Read, H. W., and Balser, T. C.: GC-based detection of aldonitrile acetate derivatized glucosamine and muramic acid for microbial residue determination in soil, J. Vis. Exp., 63, e3767, doi:10.3791/3767, 2012.
    • Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineralization: theory and models across scales, Soil Biol. Biochem., 41, 1355-1379, 2009.
    • Lodge, G. M. and Murphy, S. R.: Root depth of native and sown perennial grass-based pastures, North-West Slopes, New South Wales, 1. Estimates from cores and effects of grazing treatments, Anim. Prod. Sci., 46, 337-345, 2006.
    • Manzoni, S. and Porporato, A.: Soil carbon and nitrogen mineralization: theory and models across scales, Soil Biol. Biochem., 41, 1355-1379, 2009.
    • Manzoni, S., Trofymow, J. A., Jackson, R. B., and Porporato, A.: Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter, Ecol. Monogr., 80, 89-106, 2010.
    • Miltner, A., Bombach, P., Schmidt-Brücken, B., and Kästner, M.: SOM genesis: microbial biomass as a significant source, Biogeochemistry, 111, 41-55, 2012.
    • Oldfield, E. E., Wood, S. A., Palm, C. A., and Bradford, M. A.: How much SOM is needed for sustainable agriculture? Front. Ecol. Environ., 13, 527-527, 2015.
    • Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S.: Analysis of factors controlling soil organic matter levels in Great Plains grasslands, Soil Sci. Soc. Am. J., 51, 1173-1179, 1987.
    • Paul, E. A. and Clark, F. E.: Soil microbiology and biochemistry, Academic Press, San Diego, CA, 1986.
    • Paustian, K., Collins, H. P., and Paul, E. A.: Management controls on soil carbon. Soil organic matter in temperate agroecosystems: Long-term experiments in North America, in: Management controls on soil carbon, CRC Press, Boca Raton, FL, 15-49, 1997.
    • Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith, P.: Climate-smart soils, Nature, 532, 49-57, doi:10.1038/nature17174, 2016.
    • Rasmussen, P. E. and Parton, W. J.: Long-term effects of residue management in wheat-fallow: I. Inputs, yield, and soil organic matter, Soil Sci. Soc. Am. J., 58, 523-530, 1994.
    • Read, P.: Biosphere carbon stock management: addressing the threat of abrupt climate change in the next few decades: an editorial essay, Climatic Change, 87, 305-320, 2008.
    • Richardson, A. E., Hocking, P. J., Simpson, R. J., and George, T. S.: Plant mechanisms to optimise access to soil phosphorus, Crop Pasture Sci., 60, 124-143, 2009.
    • Sanderman, J., Fillery, I. R. P., Jongepier, R., Massalsky, A., Roper, M. M., Macdonald, L. M., Maddern, T., Murphy, D. V., and Baldock, J. A.: Carbon sequestration under subtropical perennial pastures II: Carbon dynamics, Soil Res., 51, 771-780, 2014.
    • Sanderman, J., Baisden, W. T., and Fallon, S.: Redefining the inert organic carbon pool, Soil Biol. Biochem., 92, 149-152, 2016.
    • Schimel, J. P.: Biogeochemical models: implicit vs. explicit microbiology, in: Global Biogeochemical Cycles in the Climate System, editedf by: Schulze, E. D., Harrison, S. P., Heimann, M., Holland, E. A., LLoyd, J. J., Prentice, I. C., and Schimel, D., Academic Press, 177-183, 2001.
    • Siddique, K. H. M., Belford, R. K., and Tennant, D.: Root: shoot ratios of old and modern, tall and semi-dwarf wheats in a Mediterranean environment, Plant Soil, 121, 89-98, 1990.
    • Skjemstad, J. O., Clarke, P., Taylor, J. A., Oades, J. M., and Newman, R. H.: The removal of magnetic materials from surface soils - a solid-state C-13 CP/MAS NMR study, Aust. J. Soil Res., 32, 1215-1229, 1994.
    • Skjemstad, J. O., Spouncer, L. R., Cowie, B., and Swift, R. S.: Calibration of the Rothamsted organic carbon turnover model (RothCver.26.3), using measurable soil organic carbon pools, Aust. J. Soil Res., 42, 79-88, 2004.
    • Smernik, R. J. and Oades, J. M.: The use of spin counting for determining quantitation in solid state 13-C NMR spectra of natural organic matter, 1. Model systems and the effects of paramagnetic impurities, Geoderma, 96, 101-129, 2000.
    • Smith, P.: Soil carbon sequestration and biochar as negative emission technologies. Global Change Biol., 22, 1315-1324, 2016.
    • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., and Scholes, B.: Greenhouse gas mitigation in agriculture, P. T. R. Soc. B, 363, 789-813, 2008.
    • Soil Survey Staff: Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd edition, Natural Resources Conservation Service, US Department of Agriculture Handbook 436, 1999.
    • Stuiver, M. and Polach, H. A.: Reporting of C-14 data - Discussion, Radiocarbon, 19, 355-363, 1977.
    • Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D. N., Schwalm, C. R., Michalak, A. M., Cook, R., Ciais, P., Hayes, D., and Huang, M.: Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions, Global Biogeochem. Cy., 29, 775-792, 2015.
    • Tiessen, H., Cuevas, E., and Chacon, P.: The role of soil organic matter in sustaining soil fertility, Nature, 371, 783-785, 1994.
    • Trumbore, S. E.: Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements, Global Biogeochem. Cy., 7, 275-290, 1993.
    • Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., Ritchie, J. C., McCarty, G. W., Heckrath, G., Kosmas, C., Giraldez, J. V., Marques da Silva, J. R., and Merckx, R.: The impact of agricultural soil erosion on the global carbon cycle, Science, 318, 626-629, 2007.
    • Wardle, D. A., Yeates, G. W., Nicholson, K. S., Bonner, K. I., and Watson, R. N.: Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period, Soil Biol. Biochem., 31, 1707-1720, 1999.
    • Weider, W. R., Bonan, G. B., and Allison, S. D.: Global soil carbon projections are improved by modelling microbial processes, Nature Clim. Change, 3, 909-912, 2013.
    • Zhang, X. and Amelung, W.: Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils, Soil Biol. Biochem., 28, 1201-1206, 1996.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article