LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Salah, M. (2014)
Languages: English
Types: Article
Subjects:
This study employed a hybrid system for the combination of pixel-based (PB) and object-oriented (OO) Support Vector Machines (SVMs) based on Bayesian Probability Theory (BPT) for improved land cover classification. A set of uncorrelated feature attributes have been generated from a one-meter IKONOS satellite image. Four different SVMs kernels were compared and tested to classify buildings, trees, roads and ground from satellite image and the generated attributes. The kernels used include: linear, polynomial, radial basis function (RBF), and sigmoid. PB and OO SVMs have been applied to classify the image. BPT was then applied for combining the class memberships from the PB and OO classifiers. Accuracy assessment was carried out using reference data sets derived from the one-meter IKONOS image. The outcomes demonstrate that the OO method has achieved an overall kappa coefficient of 0.8286, compared with 0.6327 that was derived from the conventional PB method. The improvement in overall kappa obtained from the combined system was 0.0608 over the OO SVMs.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from